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Abstract

A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure dis-
placement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the
simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed
exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the
Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method,
plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of
the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to
characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of
Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the
crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Recently, with advancements in experimental technique and measuring precision, many experimental evidences
have displayed that at the micron or sub-micron scales the metal material behaves with a significantly higher strength
than that when it is at the macro-scale. Such a difference of the mechanical behaviors between the micron scale and the
macro-scale is often referred to as the size effect. For example, in the micro-indentation tests for metals (Stelmashenko
et al., 1993; Ma and Clarke, 1995; McElhaney et al., 1998; Wei et al., 2001), the measured hardness values increase as
the indent depth decreases from microns to sub-micron. Size effect phenomena have also observed in the micro-torsion
test for copper wire (Fleck et al., 1994), and in the thin-beam bending test for metals (Stolken and Evans, 1998), as
well as in the interfacial adhesion experiments for the metal/ceramic systems (Bagchi and Evans, 1996; Lipkin et al.,
1998), etc. About fracture of solids, attempts to link macroscopic fracture behavior to atomistic fracture processes in
ductile metals are frustrated by the inability of conventional elastic-plastic theories to adequately model stress-strain
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behavior at the small scales required in crack tip models. Adding to the complications of the atomistic separation
processes and interactions of individual dislocations with the crack tip, is the complication of an intermediate region
lying between the tip and the outer plastic zone within which stresses are almost certainly much higher than implied
by conventional elastic-plastic theory. An obvious reason why the conventional elastic-plastic theory cannot simulate
the size effect successfully is that the conventional theory does not include any length parameters, with which the
difference of behaviors of solids in macro- and micro-scales can be distinguished.

In order to describe and model the size effects, several strain gradient theories have been presented (Fleck and
Hutchinson, 1993; 1997; Aifantis, 1984; Gao et al., 1999; Chen and Wang, 2001; etc.). In the strain gradient theories,
several length parameters are included, and through them, the size effects are predicted and characterized. However,
since the strain gradient terms are included in the constitutive equations and the displacement gradient terms appear in
the boundary conditions, the considerable complications and difficulties are come out in solving the related problems
(see Engel et al., 2002; Shu et al., 1999; Matsushima et al., 2002). Generally, the conventional displacement-based
finite element method fails to simulate the strain gradient effect. Although some simulation and modeling methods
have been presented in last several years for studying the micro-indentation tests (Shu and Fleck, 1998; Begley and
Hutchinson, 1998; Wei et al., 2001), the stationary and growing crack tip fields (Xia and Hutchinson, 1996; Wei and
Hutchinson, 1997; Zhang et al., 1998; Huang et al., 1999; Shi et al., 2000), as well as the plate (or beam) bending
problem (Engel et al., 2002), it is still important and a tough challenge to develop an effective finite element methods
for the strain gradient theories (Engel et al., 2002). In the present paper, a new finite element method for strain gradient
theories will be presented. In developing the special finite element methods, it is important to test the effectiveness
of the methods through applying them to the analyses of some typical problems which have had the closed-form
solutions. It is worth noting that, Huang and his collaborators have solved the several fundamental elastic fracture
problems based on the strain gradient theories of Fleck and Hutchinson (1993; 1997), and obtained a series of the
closed-form analytical solutions (Zhang et al., 1998; Shi et al., 2000). These basic solutions will be used to check the
effectiveness of the new finite element methods in the present investigations.

In the new finite element method, the displacement derivatives are taken as the fundamental variables. Through
applying the new finite element method to the analyses for the fundamental fracture problems (elastic strain gradient
problems: Mode I, Mode II and Mode III), the effectiveness of the new finite element method is tested and confirmed.
Moreover, the effectiveness of the Zienkiewicz–Taylor C1 finite element method in application to the strain gradient
problems is also discussed. Furthermore, the new finite element method is used to analyze the plane strain and strain
gradient elastic-plastic fracture problems. The crack tip fields, the traction distributions along the plane ahead of the
crack tip, are studied and the size effect in microscopic fracture is analyzed. In the present research, the adopted strain
gradient plasticity theory is the generalized compressible deformational theory of Fleck–Hutchinson version (Fleck
and Hutchinson, 1997) derived by Wei (2001).

2. Problem formulations

2.1. Fleck–Hutchinson strain gradient plasticity theory (the generalized compressible deformational theory)

The general compressible deformational theory of Fleck–Hutchinson strain gradient plasticity (Fleck and Hutchin-
son, 1997) has been derived by Wei (2001). A brief description is outlined as follows.

The definitions of the strain and strain gradient are defined by

εij = 1

2
(ui,j + uj,i) = εe

ij + ε
p
ij , ηijk = uk,ij = ηe

ijk + η
p
ijk, (1)

The elastic strains εe
ij and elastic strain gradients ηe

ijk are related to the stress σij and the higher-order stress τijk

through defining an elastic strain energy density,

W e = E

(
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and by using the conjugate relations

σij = ∂W e/∂εe , τijk = ∂W e/∂ηe , (3)
ij ijk
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where, E and ν are the Young’s modulus and Poisson ratio, respectively, Le
I (I = 1,4) are the elastic length pa-

rameters, η
e(I )
ijk (I = 1,3) are the deviatoric part of ηe

ijk, η
e(4)
ijk is the hydrostatic part of ηe

ijk concerning the volume
deformation. Assuming that the contribution to the strain energy density from the mixed part of both the hydrostatic
and deviatoric parts of the strain gradient invariants, η

e(4)
ijk η

e(3)
ijk , can be neglected, as in author’s another paper (Wei

and Hutchinson, 1997), so we immediately arrive at the elastic strain energy density expression, Eq. (2).
For J2 deformation theory, the effective strain and effective stress considering the strain gradient effects are defined

by

Ξ =
√√√√2

3
ε′
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ijkη
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with LI (I = 1,3) as the plastic length parameters, where

η
(I)
ijk = T

(I)
ijklmnηlmn, τ

(I)
ijk = T

(I)
ijklmnτlmn, (5)

T
(I)
ijklmn (I = 1,4) is the projection tensor of the strain gradients, and the detailed expressions have been presented by

Wei and Hutchinson (1997). Thus, the plastic strains and strain gradients can be expressed

ε
p
ij = 3

2hp

∂J2
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= 3
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where

hp = Σ/(Ξ − Σ/E), (7)

hp is the plastic modulus. Considering the power-law hardening material,

Ξ = Σ/E, Σ � σY ; Ξ = (σY /E)(Σ/σY )1/N , Σ > σY (8)

one has

hp = E
{
(Σ/σY )1/N−1 − 1

}−1
, (9)

where σY is material yield strength, and N is the strain hardening exponent.
By using the relations from (1) to (9) and the normality of projection tensors, the general compressible form of the

deformational theory of strain gradient plasticity can be derived out

σij = E

1 + ν + 3
2E/hp

εij + 1
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For strain gradient elasticity, the constitutive relations can be simplified through letting E/hp = 0 in Eq. (10), or
directly from (2) and (3), one can derive

σij = E

1 + ν
εij + Eν

(1 − 2ν)(1 + ν)
εkkδij , τijk = 2E

{
4∑

I=1

Le2

I T
(I)
ijklmn

}
ηlmn. (11)

In formulas (10) and (11), Le
I (I = 1,4) and LI (I = 1,3) are the length-scale parameters of strain gradient elas-

ticity and plasticity, respectively. From (4) (or (2)), LI (or Le
I ) (I = 1,3) characterize the strength of energy density

contributed from the deviation part of higher-order strains and stresses, and Le
4 characterizes strength of the elastic

energy density contributed from hydrostatic part of higher-order strains and stresses. From the discussion by Fleck
and Hutchinson (1997), for more general solid which is dependent on both stretch and rotation gradients (SG theory),
there is an approximate relation among the parameters:

L1 = L, L2 = 1
L, L3 =

√
5

L. (12)

2 24
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For couple stress theory (Fleck and Hutchinson, 1993), the relation among the parameters is

L1 = 0, L2 = 1

2
L, L3 =

√
5

24
L. (13)

Similarly, the discussion and corresponding results, (12) and (13), are also suitable for strain gradient elasticity case.
Previous researches by author have shown that the solution is insensitive to the value of ratio Le/L within the region
0 < Le/L < 1 (Wei and Hutchinson, 1997). Thus, in the present study let Le/L = 0.5, in addition, take Le

4 = Le/2.
Clearly, the constitutive relations (10) will degenerate to the conventional elastic-plastic constitutive relation for

L → 0.

2.2. Variational relations

Frequently, equilibrium equations are replaced by variational relation in using the finite element method. Different
forms of the variational relations correspond to the different finite element methods. In the variational relation for
conventional elastic-plastic theory, the displacement components are taken as the fundamental variables with the
displacements as the nodal variables in the conventional finite element method. For the strain gradient theory as
discussed above, however, a proper form of the variational relation needs to be discussed, and an effective finite
element method needs to be studied. A candidate variational relation form was given by Fleck and Hutchinson (1997),
which is dependent on the two types of variables, the displacements and the displacement derivatives. Naturally, the
corresponding finite element method which is similar to the Zienkiewicz–Taylor C1 continuity element scheme by
taking both displacements and displacement derivatives as the nodal variables is considered first. Moreover, in the
present study, a new form of variational relation will be considered, and a new finite element method will be presented
based on the new form of variational relation. The effectiveness of both finite element methods will be tested through
applications of them to some fundamental strain gradient problems which have the closed-form exact solutions and
through comparing the numerical solutions with the existed exact solutions. In the following analyses, two kinds of
variational relations will be considered.

2.2.1. Taking pure displacement derivatives as the fundamental variables
For the purpose of developing a new finite element method, we consider a new form of variational equation by

one-step integration∫
V

(σij δεij + τijkδηijk)dV =
∫
V

{
σij δ

∂ui

∂xj

+ τijkδ
∂2uk

∂xi∂xj

}
dV

=
∫
V

{σlj − τij l,i}δ ∂ul

∂xj

dV +
∫
S

niτij lδ
∂ul

∂xj

dS. (14)

Eq. (14) can be further expressed as∫
V

{
σij δUij + τijkδ

∂Ukj

∂xi

}
dV =

∫
V

f B
ij δUij dV +

∫
S

MjiδUij dS, (15)

where

Uij = ∂ui

∂xj

, f B
ij = σij − τkji,k, Mji = nkτkji . (16)

f B
ij and Mij are taken as the generalized body force and the generalized surface force, respectively. Uij is the gen-

eralized displacement. The physical significance of the new variational equation (15) can be understood as that the
variation of total strain energy is equal to the variation of the work done by the generalized body force and the gen-
eralized surface force with respect to the generalized displacement. With the new denotation in (16), the constitutive
relations, (10) can be briefly rewritten as

σij = DijklUkl, τijk = CijklmnUnl,m. (17)

In (15) and (16), the fundamental variables are the pure displacement derivatives Uij .
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2.2.2. Taking both displacements and displacement derivatives as the fundamental variables
The variational relation based on both the displacements and displacement derivatives has been derived by Fleck

and Hutchinson (1997). For comparison and for conveniently discussing the Zienkiewicz–Taylor C1 finite element
method in the following sections, the result is given here∫

V

(σij δεij + τijkδηijk)dV =
∫
V

fkδuk dV +
∫
S

tkδuk dS +
∫
S

rk
(
D̂δuk

)
dS. (18)

Based on Eq. (18), the traction and toque on S surface have been derived by Fleck and Hutchinson as

tk = ni

(
σik − ∂τijk

∂xj

)
+ ninj τijk(Dpnp) − Dj(niτijk), rk = ninj τijk. (19)

The operators D̂ and Dj in (18) and (19) are defined as

Dj = ∂/∂xj − njnk∂/∂xk, D̂ = nk∂/xk, (20)

where ni in Eqs. (18)–(20) is the direction cosine of S surface. In the variational relation (18) both the displacements
and the displacement derivatives are taken as the fundamental variables.

3. A new finite element method

The variational relations (see (15) and (16)) imply that the pure displacement derivatives can be taken as the fun-
damental variables in finite element method. Following the point, a new finite element method for the strain gradient
theory can be presented.

For convenience, 3-noded triangular element is used in the present study. As usual, the following area coordinates
(fi) and their derivatives are adopted

(f1, f2, f3) = (Δ1/Δ,Δ2/Δ,Δ3/Δ), (f1x, f2x, f3x) = (b1/Δ,b2/Δ,b3/Δ),

(f1y, f2y, f3y) = (c1/Δ, c2/Δ, c3/Δ), (21)

where

b1 = y2 − y3, b2 = y3 − y1, b3 = y1 − y2, c1 = x3 − x2, c2 = x1 − x3, c3 = x2 − x1 (22)

are related to the nodal coordinates, (Δ1,Δ2,Δ3) are equal to the areas of triangles P23, P31 and P12, respectively,
as shown in sketch figure of Fig. 1; Δ is area of triangle 123; (xi, yi) (i = 1,2,3) are the coordinates of nodes 1, 2
and 3.

For simplicity, firstly, Eqs. (15), (16) and (17) are expressed into the matrix forms:∫
V

{
δUT · σ + δ(∇U)T · τ}

dV =
∫
V

δUT · f B dV +
∫
S

δUT · M dS, (23)

σ = D · U , τ = C · (∇U). (24)

Stiffness modulus matrices D and C can be easily formulated from constitutive relations (10). Displacement gradient
U can be expressed by its node value U e in each element,

U = N · U e (25)

then

(∇U) = B · U e, B = ∇N , (26)

where N is shape function matrix; B is strain matrix. Substitute (24), (25) and (26) into (23), for each element, we
have ∫

e

{
NTDN + BTCB

}
dV · U e =

∫
e

NTf B dV +
∫

e

NTM dS, (27)
V V S
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Fig. 1. Finite element mesh and triangle element and the area coordinates. Nodal variables are displacement derivatives.

where superscription “e” stands for an element. V e and Se are the element volume and boundary surface. Frequently
(27) is simply expressed in the form:

Ke · U e = F e, (28)

where

Ke =
∫
V e

{
NTDN + BTCB

}
dV, F e =

∫
V e

NTf B dV +
∫
Se

NTM dS (29)

are the element stiffness matrix and element node force matrix, respectively. Assembling all element relations by
using (23) and (27), the global stiffness equation is obtained as:

K · U = F , (30)

where

K =
∑

e

∫
V e

{
NTDN + BTCB

}
dV, F =

∑
e

{ ∫
V e

NTf B dV +
∫
Se

NTM dS

}
(31)

are the globe stiffness matrix and node force matrix, respectively. Relations (25)–(31) show the outlines of the new
finite element method. In order to put the new finite element method into application, it is important to further study
the forms of the shape function matrix and node variable matrix. For simplicity, consider a simple case first, where
the single displacement component w is concerned. The case of multi-displacement components (such as u, v, etc.)
can be generalized simply. The displacement derivatives for the single displacement w are calculated by

Uij ≡ U3j = (∂w/∂x, ∂w/∂y) = (wx,wy).

The displacement gradient components can be expressed by using the nodal variables as

wx =
3∑

I=1

{
N

(I)
1 W

(I)
X + N

(I)
2 W

(I)
Y

}
, wy =

3∑
I=1

{�N(I)
1 W

(I)
X + �N(I)

2 W
(I)
Y

}
, (32)

where (W
(I)
X ,W

(I)
Y ) (I = 1,2,3) are the node variables of element; the shape functions (N

(I)
1 ,N

(I)
2 ) and (�N(I)

1 , �N(I)
2 )

(I = 1,2,3) will be determined by selecting a polynomial functions for (wx,wy) according to six continuous
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conditions at all three nodes and one compatible condition wxy = wyx . Consider a cubic polynomial relation for
displacement function

w(x,y) = A0 + A1x + A2y + A3f1f2 + A4f2f3 + A5f3f1 + A6
(
f 2

1 f2 + f 2
2 f3 + f 2

3 f1
)
. (33)

Thus the compatible condition, wxy = wyx , can be satisfied automatically. From (33), we have

wx = A1 + {
A3(b1f2 + b2f1) + A4(b2f 3 + b3f2) + A5(b3f1 + b1f3) + A6

(
b2f

2
1 + b3f

2
2 + b1f

2
3

+ 2b1f1f2 + 2b2f2f3 + 2b3f3f1
)}

/Δ,
(34)

wy = A2 + {
A3(c1f2 + c2f1) + A4(c2f 3 + c3f2) + A5(c3f1 + c1f3) + A6

(
c2f

2
1 + c3f

2
2 + c1f

2
3

+ 2c1f1f2 + 2c2f2f3 + 2c3f3f1
)}

/Δ,

where bi , ci (i = 1,2,3) have been given in (22), Ai (i = 1,2, . . . ,6) are constants to be determined from con-
tinuity conditions of (wx,wy) at nodes, and can be expressed by the node variables according to the conditions:

(wx,wy)|(I ) = (W
(I)
X ,W

(I)
Y ) (I = 1,2,3). A0 can be taken as the element rigid displacement, and it can be deter-

mined after the solution (wx,wy) is found if one wants to find displacement field. Through a longer derivation and
simplification, we obtain

A1 = 1

3

{
W

(1)
X + W

(2)
X + W

(3)
X + A3b3/Δ + A4b1/Δ + A5b2/Δ

}
,

A2 = 1

3

{
W

(1)
Y + W

(2)
Y + W

(3)
Y + A3c3/Δ + A4c1/Δ + A5c2/Δ

}
,

A3 = 1

2
c3

(
W

(1)
X − W

(2)
X

) − 1

2
b3

(
W

(1)
Y − W

(2)
Y

) − 1

2
A6,

(35)
A4 = 1

2
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(
W
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(3)
X

) − 1

2
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(
W

(2)
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(3)
Y
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2
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2
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(
W
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X
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2
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(
W

(3)
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(1)
Y
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2
A6,

A6 = 1

3

{−c1W
(1)
X − c2W

(2)
X − c3W

(3)
X + b1W

(1)
Y + b2W

(2)
Y + b3W

(3)
Y

}
.

From (32), (34) and (35), the expressions of shape functions for node i can be derived out:

N
(i)
1 = 1

3
− 1

2
cj

(
1

3
bj + bkfi + bifk

)/
Δ + 1

2
ck

(
1

3
bk + bifj + bjfi

)/
Δ

− 1

3
ci

{
1

2
(bifi + bjfj + bkfk) + f 2

i bj + f 2
j bk + f 2

k bi + 2(bififj + bjfjfk + bkfkfi)

}/
Δ,

N
(i)
2 = 1

2
bj

(
1

3
bj + bkfi + bifk

)/
Δ − 1

2
bk

(
1

3
bk + bifj + bjfi

)/
Δ

+ 1

3
bi

{
1

2
(bifi + bjfj + bkfk) + f 2

i bj + f 2
j bk + f 2

k bi + 2(bififj + bjfjfk + bkfkfi

)}/
Δ,

�N(i)
1 = −1

2
cj

(
1

3
cj + ckfi + cifk

)/
Δ + 1

2
ck

(
1

3
ck + cifj + cjfi

)/
Δ

− 1

3
ci

{
1

2
(cifi + cjfj + ckfk) + f 2

i cj + f 2
j ck + f 2

k ci + 2(cififj + cjfjfk + ckfkfi)

}/
Δ,

�N(i)
2 = 1

3
+ 1

2
bj

(
1

3
cj + ckfi + cifk

)/
Δ − 1

2
bk

(
1

3
ck + cifj + cjfi

)/
Δ

+ 1

3
bi

{
1

2
(cifi + cjfj + ckfk) + f 2

i cj + f 2
j ck + f 2

k ci + 2(cififj + cjfjfk + ckfkfi)

}/
Δ. (36)

(i, j, k) are the cyclic permutations of 1,2,3. The new finite element method can be used to calculate the strain
gradient problems by substituting (36) into (26), (30) and (31).
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For comparison, the fundamental relation of the Zienkiewicz–Taylor C1 finite element method is discussed briefly.
The variational relation (18) can be directly transferred to the finite element formulations. The form of the variational
relation (18) implies that both the displacements and displacement gradients can be taken as the fundamental variables.
This can be directly connected with the Zienkiewicz–Taylor C1 finite element scheme (Zienkiewicz and Taylor, 1989a,
1989b). A detail discussion was given in Xia and Hutchinson (1996). The fundamental formulations of the C1 finite
element scheme were derived by Zienkiewicz and Taylor (1989a, 1989b) and by Xia and Hutchinson (1996). For a
triangle element, the shape function for nodal variables of both displacements and displacement derivatives was given
as follows (from Xia and Hutchinson, 1996)

NT
i =

⎛⎝ 3f 2
i − 2f 3

i − 2fifjfk,

−cj (f
2
i fk + fifjfk) + ckf

2
i fj ,

bj (f
2
i fk + fifjfk) − bkf

2
i fj

⎞⎠ , (37)

(i, j, k) are the cyclic permutations of 1,2,3 for each nodes. Three expressions in (37) correspond to nodal variables
(w,wx,wy) at node i. The C1 finite element method is referred to the continuity of both the displacement and dis-
placement derivative across the element boundary nodes. Based on (10) and (18), the corresponding globe stiffness
matrix and the node force matrix can be derived similarly with the derivations of Eqs. (30) and (31) for the new finite
element method. However, the fundamental variables include both displacements and their derivatives, as described
by Xia and Hutchinson (1996). The effectiveness of the C1 finite element method in application to the strain gradient
problems will be discussed in Section 6.

4. Matrix expressions of some fundamental problems for new finite element method

In order to present the applications of the new finite element method, let us further discuss the matrix expressions
in detail for some typical cases, such as the anti-plane shear and the plane strain.

4.1. Anti-plane shear

For the anti-plane shear case, the fundamental variables in matrix forms can be dictated as follows

U =
(

wx

wy

)
=

(
γ31
γ32

)
, ∇U =

(
wxx

wyy

2wxy

)
=

(
η113
η223

2η213

)
, σ =

(
σ13
σ23

)
, τ =

(
τ113
τ223
τ213

)
,

f B =
(

σ13 − τ113,1 − τ213,2
σ23 − τ123,1 − τ223,2

)
, M =

(
n1τ113 + n2τ213
n1τ123 + n2τ223

)
, (38)

U e = (
W

(1)
X W

(1)
Y W

(2)
X W

(2)
Y W

(3)
X W

(3)
Y

)T
. (39)

In (38), τ123 = τ213 is considered, and some non-zero components of higher-order stresses are not listed, because they
will not appear in the variation equation (23), however in calculating the effective stress the omitted terms will be
included. In (38), ni is the direction cosine of S. From (32), (38) and (39), the corresponding shape function and strain
matrices become

N =
(

N
(1)
1 N

(1)
2 N

(2)
1 N

(2)
2 N

(3)
1 N

(3)
2

�N(1)
1

�N(1)
2

�N(2)
1

�N(2)
2

�N(3)
1

�N(3)
2

)
, (40)

B =
⎛⎜⎝

N
(1)
1x N

(1)
2x N

(2)
1x N

(2)
2x N

(3)
1x N

(3)
2x

�N(1)
1y

�N(1)
2y

�N(2)
1y

�N(2)
2y

�N(3)
1y

�N(3)
2y

2N
(1)
1y 2N

(1)
2y 2N

(2)
1y 2N

(2)
2y 2N

(3)
1y 2N

(3)
2y

⎞⎟⎠ . (41)

4.2. Plane strain

For plane strain case, fundamental displacement components are (u,v). The shape functions of displacement gra-
dient components can be taken as the same form as that for w in above anti-plane shear case (see (33)). The matrix
forms of the fundamental variables are given as follows
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U = (ux vy uy vx)
T,

∇U = (uxx uyy 2vxy vyy vxx 2uxy)
T = (η111 η221 2η122 η222 η112 2η121)

T,

σ = (σ11 σ22 σ12 σ21)
T, τ = (τ111 τ221 τ122 τ222 τ112 τ121)

T, (42)

f B =
⎛⎜⎝

σ11 − τ111,1 − τ211,2
σ22 − τ122,1 − τ222,2
σ12 − τ121,1 − τ221,2
σ21 − τ112,1 − τ212,2

⎞⎟⎠ , M =
⎛⎜⎝

n1τ111 + n2τ211
n1τ122 + n2τ222
n1τ121 + n2τ221
n1τ112 + n2τ212

⎞⎟⎠ ,

U e = (U
(1)
X V

(1)
X U

(1)
Y V

(1)
Y U

(2)
X V

(2)
X U

(2)
Y V

(2)
Y U

(3)
X V

(3)
X U

(3)
Y V

(3)
Y )T. (43)

In (42), some non-zero higher-order stress components are not listed there, because they do not appear in the varia-
tional equation (23). The shape function matrix and strain matrix can be expressed as

N =

⎛⎜⎜⎜⎜⎝
N

(1)
1 0 N

(1)
2 0 N

(2)
1 0 N

(2)
2 0 N

(3)
1 0 N

(3)
2 0

0 �N(1)
1 0 �N(1)

2 0 �N(2)
1 0 �N(2)

2 0 �N(3)
1 0 �N(3)

2

�N(1)
1 0 �N(1)

2 0 �N(2)
1 0 �N(2)

2 0 �N(3)
1 0 �N(3)

2 0

0 N
(1)
1 0 N

(1)
2 0 N

(2)
1 0 N

(2)
2 0 N

(3)
1 0 N

(3)
2

⎞⎟⎟⎟⎟⎠ , (44)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
(1)
1x 0 N

(1)
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(1)
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(2)
1x 0 N

(2)
2x 0 N

(3)
1x 0 N

(3)
2x

2N
(1)
1y 0 2N

(1)
2y 0 2N

(2)
1y 0 2N

(2)
2y 0 2N

(3)
1y 0 2N

(3)
2y 0
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.

(45)

5. Solution procedures using the new finite element method

In the fundamental relations of the new finite element method, stiffness modulus D and C in (31) can be written
easily through comparing (10) (or (11)) and (24), and the equivalent node force matrix F can be calculated with the
equivalent body force f B and the surface toque M . f B and M can be calculated using formulas (38) or (42) for the
anti-plane shear case or plane strain case. The steps of solving a strain gradient problem using the new finite element
method can be dictated as follows:

(1) Take the corresponding conventional elastic stress solution as the initial equivalent body force (matrix f B), and
let the initial surface toque matrix M be zero. Solve Eq. (30), and get the first trial solution;

(2) Substitute the solution of the first step into (38) or (42) to calculate the new f B and M . Then substitute them into
(31) to calculate K and F , and then solve the matrix equation (30);

(3) Use the new solution to calculate the new f B and M . Repeat the iteration procedure mentioned above until a
convergent solution is obtained.

For the crack problems, the conventional K-stress fields are used to calculate the initial equivalent body forces.
In the present study, our attention will be mainly focused on the investigation of the traction distributions along the

plane ahead of the crack tip within the microscale region. Traction formula considering strain gradient effects can be
given from (19) for (n1, n2) = (0,1),

t2k = σ2k − 2
∂τ21k

∂x1
− ∂τ22k

∂x2
. (46)

Mode I, Mode II and Mode III fracture problems correspond to k = 2, k = 1 and k = 3, respectively.
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6. Effectiveness testing of the new finite element methods

The effectiveness of the new finite element method can be assessed by applying it to the analyses for some typical
problems which have had the closed-form analytical solutions, and through comparing the numerical solutions with
the corresponding exact solutions.

It is worth pointing out that the most successful application of the new finite element method is to the Bernoulli–
Euler beam bending problems, the exact solution is always obtained by using the new finite element method, no matter
how dense the element divided. The reason is that both exact solution of the Bernoulli–Euler beam bending problems
and the new finite element method solution are polynomial forms.

In this section, we focus attention to that the new finite element methods developed above will be used to analyze
the typical fracture problems in strain gradient elasticity, about which Huang and his collaborators have obtained the
closed-form (exact) solutions. For comparison, in the analyses for the mode III fracture problem, the Zienkiewicz–
Taylor C1 finite element method is also adopted. The finite element mesh is shown in Fig. 1. The basic element is
the triangle element, which is formed by dividing a quadrilateral into four parts, as shown in Fig. 1. The boundary
conditions include two parts, i.e., the remote boundary condition and crack surface boundary condition. At the remote
boundary, K-field is exerted. On the crack surfaces, traction-free and toque-free boundary conditions are exerted.

6.1. Anti-plane shear – Mode III fracture

Zhang et al. (1998) and Shi et al. (2000) have obtained the closed form solutions for fundamental fracture problem
(Mode III) in strain gradient elasticity, based on the Wiener–Hopf techniques. The closed-form (exact) solution, nor-
mal traction distribution on the plane ahead of the crack tip, will be served as the main benchmark for the numerical
methods.

Firstly, the Zienkiewicz–Taylor C1 finite element method is used to calculate the traction distribution. In our cal-
culation, the second selection of the specimen point proposed in Specht (1988) is adopted. The result is shown in
Fig. 2. Simultaneously, the solutions obtained by Huang and his collaborators, the asymptotic solution, closed-form
(exact) solution, as well as the classical KIII-field, are also shown in the figure. Through comparison, surprisingly, the
Zienkiewicz–Taylor C1 finite element solution fits close to the asymptotic solution, and is far away from the exact
solution. Note that asymptotic solution estimates only the role of the higher-order singularity-dominated terms, i.e.,
the role of the higher-order stress and strain terms in strain gradient theory. Therefore, the result of the Zienkiewicz–
Taylor C1 finite element method shown in Fig. 2 implies that the role of the terms of conventional stresses and
strains in the strain gradient theory is underestimated or submerged. This leads us to check the effectiveness of the
Zienkiewicz–Taylor C1 finite element method in being applied to the strain gradient problems. Why could one obtain
an effective solution for a plate-bending problem by using the C1 finite element method (Zienkiewicz and Taylor,
1989a, 1989b), and why cannot obtain the effective solution for the strain gradient problem? Through comparison,
we observe that there exist some differences between the plate-bending theory and the strain gradient theory. For
the plate-bending theory there only exist the terms of the second-order derivatives of displacements (curvatures), i.e.,
pure “strain gradient” terms, and not include the displacement gradient terms in the constitutive relations. However,
for the strain gradient theory, both the strain gradient terms and the displacement gradient terms are all included in
the constitutive relations. According to fundamental requirement for an effective finite element method, for the plate
bending theory the finite element method should characterize a constant curvature state effectively (“constant strain
condition”), and the C1 finite element method satisfies the condition. However, applying the C1 finite element method
to the problems described by the strain gradient theory, the “constant strain condition” is not clear, because we have
both the higher-order strain terms and the conventional strain terms simultaneously, and these immediately lead to two
different “constant strain conditions”. Through further investigating, we conclude that the two different constant strain
requirements are difficult or even impossible to be satisfied simultaneously. From the result shown in Fig. 1 using the
C1 finite element method, likely, the constant strain condition for the higher-order strain seems to be satisfied, while
the constant strain condition for conventional strain terms seems not to be satisfied.

In order to find the solution for mode III strain gradient elasticity problem by using the new finite element method,
in the first step, we take the conventional KIII-stress field as the initial equivalent body force and set the initial surface
toque to be zero, M = 0. Calculate the equivalent node force from (31), and solve the finite element equation (30)
to get the first trial solution. Use the trial solution to calculate the new equivalent body force and surface toque and
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Fig. 2. Comparison of the new finite element method result and the Zienkiewicz–Taylor C1 element result with exact solution for Mode III fracture.

further solve (30) iteratively, until a convergent solution is obtained. In our calculations, take the central point of
triangle element as the specimen point (we also adopted the four selections of the specimen points proposed in Specht
(1988), and obtained near same solutions). After a convergent solution is obtained, the traction distribution on the
plane ahead of the crack tip is calculated by using (46).

The comparison of the new finite element solution with the closed-form solution by Zhang et al. (1998) is shown in
Fig. 2. The exact solution is based on the couple stress theory (Fleck and Hutchinson, 1993), which corresponds to a
special selection for the length parameter group LI in general strain gradient plasticity theory (Fleck and Hutchinson,
1997), see formula (13). From Fig. 2, the solution of traction distribution using new finite element method is very
consistent with the exact solution. In the new finite element method, since the conventional stress terms are treated
as the body force, the higher-order strain and stress terms are only concerned on the analysis process. Therefore, the
“constant strain condition” is referred to the higher-order strain terms, and obviously can be satisfied.

6.2. In-plane shear – Mode II fracture

Consider Mode II plane strain fracture problem in strain gradient elasticity. Similarly, analysis using the new finite
element method starts from selecting the conventional linear fracture stress field (classical KII-field) as the initial
equivalent body force and selecting zero-initial toque. Solve Eq. (30) iteratively. Using formula (46), the traction
distribution on the plane ahead of the crack tip is calculated. The result is shown in Fig. 3. Fig. 3 (a) and (b) show
the results for two group selections of parameters LI (I = 1,3), previously taken in Shi et al. (2000). When L1 is
equal to zero, corresponds to the couple stress case, see (13). As L1 increases, the stretch effect of the strain gradients
increases. The curve of the exact solution given by Shi et al. (2000) is also plotted. Obviously, the new finite element
solution is very consistent with the exact solution.

6.3. Plane strain – Mode I fracture

For Mode I fracture problem in the strain gradient elasticity, Shi et al. (2000) have solved the case and obtained
a closed-form (exact) solution when material obeys the incompressible condition, which corresponds to that let the
material Poisson ratio be equal to 0.5. We start our analysis from the general compressible case, since when Poisson
ratio is exactly set to 0.5, the modulus matrix in finite element method will become singular from the expressions
of matrices C and D referring to (24), (29), (10) and (11). In view of the reason, we consider a series of values of
Poisson’s ratio from 0.3 to 0.495 to approach an incompressible state and compare the solution with the incompressible
exact solution of Shi et al. (2000) for further checking the effectiveness of the new finite element method.

Similarly, the iterative solution procedures are needed in solving the Mode I fracture problem. Take the conven-
tional linear fracture KI-stress field as the initial equivalent body force and set M = 0. The new finite element solutions
are given in Fig. 4 for traction distribution along the plane ahead of the crack tip calculated by using (46). The curves
shown in figure correspond to several values of Poisson’s ratio from 0.3 to 0.495. From the solution, when material
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(a)

(b)

Fig. 3. Comparison of new finite element method result with exact solution for Mode II fracture. (a) and (b) for different length parameter selections.

Fig. 4. Comparison of new finite element method result with exact solution for Mode I fracture. The exact solution is for the incompressible
material.
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properties gradually transfer from the general compressible case to the incompressible case, the traction feature on
the surface ahead of the crack tip will change from tensile to compression within the region very close to the tip.
The exact solution for the incompressible case from Shi et al. (2000) is also shown in figure. Clearly, the new finite
element solution compares also well with the exact solution. Moreover, from Fig. 4, the solutions are not sensitive to
material Poisson ratio value except the case when the value approaches to 0.5.

From the finite element method testing and analyses of elastic fracture problems in strain gradient elasticity, the
effectiveness of the new finite element method developed in the present research is confirmed. On the other hand,
one may note that the sign of the traction on the plane ahead of the crack tip changes to negative from positive with
approaching crack tip, it seems to be a contradiction to a truth. Actually, the effective scope of strain gradient theory
is limited to a circular region around and away from the crack tip. This will be further discussed later.

7. Elastic-plastic fracture of solids in strain gradient plasticity

For the elastic-plastic fracture of solids based on the strain gradient plasticity theory, we have not had the closed-
form solutions in hand. However, the effectiveness of the new finite element method has been tested and confirmed in
last section. The new finite element method has been proved to be a powerful method in dealing with the strain gradient
problems. It is important to investigate the strain gradient effect on the plastic crack tip field for understanding the
metal fractures in microscale. In this section, using the new finite element method analyzes the fundamental elastic-
plastic fracture problems considering the strain gradient effects. Similarly, the conventional linear fracture stress field
(K-field) is taken as the initial equivalent body force, and the initial surface toque is set to zero, M = 0. Solve the

(a)

(b)

Fig. 5. Elastic-plastic fracture results for Mode II case. (a) and (b) for different length parameter compositions.
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finite element equation (30) through iteration. The elastic-plastic fracture features of the Mode I and Mode II fracture
problems will be investigated, and the traction (formula (46)) distributions along the plane ahead of the crack tip will
be calculated.

For easy comparison with the solutions of the strain gradient elasticity, in this section adopt the same two groups
of the length parameter values as considered in last section, (1) L1 = L/16, L2 = L/2, L3 = √

5/24L; (2) L1 = L/8,
L2 = L/2, L3 = √

5/24L. The first and second groups of the length parameters describe a weak and a medium stretch
effects of the strain gradients, respectively.

7.1. Mode II elastic-plastic fracture

Fig. 5 shows the new finite element solutions for Mode II case. Comparing this results with the strain gradient
elastic results shown in Fig. 3, obviously the strain gradient plasticity effect is much higher than strain gradient
elasticity effect within the region 0.05 � x/L � 0.3. Due to the strain gradient plasticity effect, the traction ahead of
the tip undergoes a substantial increase. The solutions shown in Fig. 5 (a) and (b) correspond to two set selections of
the length parameters, respectively. Comparing the results of Fig. 5 (a) and (b), the shear traction on the plane ahead
of the crack tip decreases as parameter L1 increases when other parameters are fixed. For comparison, the classical
elastic-plastic solution is also plotted in the figures. From Fig. 5 (a) and (b), as x decreases (tends to the crack tip), the
shear stress t21 increases. The solution considering the strain gradient effect is higher than the classical elastic-plastic
solution. However, within a small region very near the crack tip, x/L < 0.03, the shear traction sharply goes down

(a)

(b)

Fig. 6. Elastic-plastic fracture results for Mode I case. (a) and (b) for different length parameter selections.
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and changes sign to negative value. It seems to be a contradiction to the truth, however, the scale of this region is much
smaller beyond the continuum theory attention.

7.2. Mode I elastic-plastic fracture

Fig. 6 shows the new finite element solutions, traction distributions along the surface ahead of the crack tip for
Mode I case. The results shown in Fig. 6 (a) and (b) correspond to two group selections of the length parameters.
In the figures, the variations of the normalized traction with the normalized coordinate are plotted. As the crack tip
approaches, the traction increases sharply and its value is very high near the crack tip. The solution considering the
strain gradient effect is much higher than the classical elastic-plastic solution.

In order to display the strain gradient effect clearly, new normalizing quantities, σY and RP = (KI /σY )2/3π , are
adopted for traction and coordinates, respectively. The significance of RP is about the plastic zone size under the
small scale yielding. The result shown in Fig. 7 is from the results in Fig. 6 (b) in the new normalizing quantities.
For comparison, in Fig. 7, conventional plastic theory result is also shown in dashed line. From Fig. 7, the strain
gradient plastic effect is evident when x < 0.04RP . Using the strain gradient plasticity theory, the predicted traction
near crack tip has a very high value, while using the conventional elastic-plastic theory the traction value is quite low.
With increasing the stretch effect, i.e., with increasing the parameter L1, the predicted traction along the plane ahead
of the crack tip increases very much (see Fig. 8 through comparing Figs. 7 and 8). However, within a very small region

Fig. 7. Traction distributions along the plane ahead of the crack tip for several length parameter values in Mode I case.

Fig. 8. Traction distributions along the plane ahead of the crack tip for several length parameter values in Mode I case.



912 Y. Wei / European Journal of Mechanics A/Solids 25 (2006) 897–913
much close to the crack tip, the traction sign changes to negative. As stated above, the region scale of the negative
traction occupation is much smaller beyond the concern of the continuum theory.

For the elastic-plastic fracture problems considering strain gradient effects, we have ever adopted the iso-
parametrical displacement element with nine nodes to calculate them, and have compared the results with the new
finite element method results. We have found that for both Mode II and Mode III cases (shear-dominated strain gra-
dient effects), both the iso-parametrical displacement element results and the new finite element results for each case
have a big difference, however, for Mode I case (both stretch and rotation-dominated problems), both finite element
results are considerably consistent with each other.

8. Concluding remarks

The new finite element method has been presented for strain gradient theories and has been tested to be a powerful
method. In the new finite element method, the pure displacement derivatives are taken as the fundamental variables.
During solving a strain gradient problem, the corresponding conventional theory stress solution is taken as the initial
body force. The boundary conditions are satisfied through iteration. These make the analyses of the strain gradient
problem be considerably simplified. The new finite element method concerns only on the displacement gradient terms,
and is not related directly to the displacements, so that the new finite element method solutions directly supply the
strains, stresses, higher-order strains and stresses. Certainly, one can obtain the displacement field through integration
after the new finite element method solutions are attained. On the other hand, the new finite element method can also
be applied to the analyses for the problems of the displacement boundary conditions. In this case, two calculation
steps are needed: The first step is to perform a conventional elastic-plastic finite element calculation. The second
step is to carry out the new finite element analysis within a zone around the crack tip, or the interface, etc. when the
conventional finite element solution obtained from the first step is exerted on the boundary of the zone, in which the
strain gradient effects occur within the zone.

From the analyses for mode I and mode II crack problems by using the new finite element method when strain
gradient plasticity effects are considered, the traction on the plane ahead of the crack tip obtains a very high value
within a region near the crack tip. This trends appear to go a long way towards overcoming the limitations of the con-
ventional elastic-plastic theory and linking macro- and microscopic fracture behavior to atomistic fracture processes
in ductile metals. However, further efforts are still required to understand the relationship between crack tip stresses
and constitutive behavior in the regime near the tip where strain gradients become important, and further to understand
the stress wave phenomenon (changing sign from positive to negative with approaching the crack tip).
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