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Abstract For solving complex flow field with multi-scale structure higher order accurate schemes 
are preferred. Among high order schemes the compact schemes have higher resolving efficiency. 
When the compact and upwind compact schemes are used to solve aerodynamic problems there are 
numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform 
group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a pa- 
rameter function is introduced in compact scheme to control the group velocity. The newly developed 
method is simple. It has higher accuracy and less stencil of grid points. 
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Recently people pay much attention to the development of higher order accurate schemes. 
With limited computer resource high order accurate schemes are preferred for solving complex flow 
field problems because of their smaller amplitude of numerical dissipation and dispersion errors. 

Many high order accurate schemes have been developed EI-5~ . As it is known, solutions of the gas 
dynamic equations may develop discontinuities even if the initial conditions are smooth. The com- 
monly used high order accurate schemes often give poor results in the presence of the 

shock ~6-t2] . There have been a lot of activities geared towards constructing efficient difference 
schemes with high resolution of the shock. These include TVD, NND and ENO types of 
schemes. The schemes have been succesfully used for solving practical problems. Usually, rigor- 
ous analysis is only done for the scalar one-dimensional nonlinear case although numerical experi- 
ments for gasdynamic equations give good results using formal generalization of TVD and ENO 
types of schemes. Development of the shock capturing finite difference methods of TVD and ENO 
types is mainly from the view point of mathematics. In the most existing TVD and ENO types of 
schemes the physical reason of oscillation production is not considered directly. In ref. [ 1 ] the 
relevance of group velocity to the behavior of finite difference model of time-dependent partial dif- 
ferential equations was considered. In ref. [5 ] the reason of oscillation production in numerical 
solutions was analysed. According to the group velocity of wave packets, schemes were divided 
into three groups: slower (SLW), faster (FST) and mixed (MXD). For the schemes from SLW 
the oscillations in numerical solutions may appear behind the shock; for the schemes from FST 
oscillations may appear in front of the shocks ; and for the schemes from MXD the oscillations may 
appear in both sides of the shocks. The symmetrical compact schemes in ref. [2 ] were SLW, 
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and the upwind compact schemes in refs. [4,  5 ] were MXD. In the present paper a parameter 
function is introduced to control the group velocity of wave packets. The compact scheme with 
GVC is simple. It has smaller stencil of grid points, and the resolution of the shock can be im- 
proved much. 

1 Compact  scheme with free parameter 

Consider the following model equation and its semi-difference approximation 

3u Of = 0 f = cu, c = const. (1 1) 
O~ + Ox ' 

Ouj rj 
at + - -  = 0,  ( 1 . 2 )  

Ax 

where F J A x  is an approximation of Of/Ox. The fourth order compact difference approximation 

is as follows: 

1 2 1 F j  - o ~ ,  (1 3) ~-V}+t + ~ - F  i + ~- I = 

1 z 
where ~ ~ = 2 ( ~ ;  + ~: ) ,  ~ = ~:~: ,  ~ = - V - ( s  J)=,). 

The third order accurate upwind compact difference approximation in ref. [4 ] was as 

2 ~ 1 ~ 5 -v- 1 • 

i f =  c • u,  c• (c +1 c I ) / 2 .  ( 1 . 5 )  

We can do the same analysis as it was done in ref. [5 ] ,  and conclude that scheme ( 1 . 2 )  with 

(1 .3 )  is SLW, the oscillations for it may appear behind the shock; and the scheme (1 .2 )  with 

(1 .4 )  is MXD, the oscillations will be mainly in front of the shock with small oscillations behind 

the shock. We can construct the following difference approximation with a free parameter 

1 2 1 2a~~ t)~ 2ar fj. (1.6) ~ v j + ,  + ~ V +  + ~ F ~ _ ,  - = - 

For the case a = 0 we have the fourth order symmetrical compact difference approximation ( 1 . 3 ) .  

For the case a = + 1/6 ,  we have the third order upwind compact difference approximation 

( 1 . 4 ) .  For the general case we have 

Fj (Of)  + O(aAx3) " ( 1 . 7 )  
Ax = 0x j 

Here linear dependence of f on u is not required. With initial condition 

u ( x ,  O) = exp(ikx) ,  (1 .8 )  

eq. ( 1.1 ) has exact solution 

u ( x ,  t) = e x p [ i k ( x -  ct)].  ( 1 . 9 )  

With the same initial condition, eq. ( 1 . 2 )  has the solution 

u(xj ,  t)  = exp[ 
kr ki 

where a = kAx .  The analytical expressions of kr(a ,a)  and k i (a ,  a) can be obtained easily. 

The variation of kr(a,  a) with a is given in fig. l ( a ) .  As it is known, the wave packets propa- 
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gate with group velocity. According to ref. [ 5 ] the group velocity is defined by 

d k , ( a )  (1 .11 )  
D ( a )  - act 

For the exact solution of eq. ( 1.1 ) ,  D ( a ) = 1. The variations of the group velocity D ( a ) vs. 

a are given in fig. 1 ( b ) .  
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Fig. 1. Variation of kr and D ( a )  vs. u .  (a) 1, Exact; 2, s igma=0;  3, sigma= 1/12; 4,  s igma=2/12 ;  

5, s igma=3/12 ;  (b) 1, exact; 2, s igma=0;  3, sigma= 1/12; 4,  s igma=2/12 ;  5,  s igma=3/12 .  

From fig. 1 it can be seen that the wave component with low wave numbers can be approxi- 
mated well. With the increasing of the wave number, deviation of numerical solution from the ex- 
act solution increases. This is the reason for high-frequency oscillation production in numerical 
solutions. After careful study it can be seen that for SLW schemes all wave packets in numerical 
solutions propagate with slower group velocity compared with the exact solution of ( 1.1 ) .  From 
them some propagate in the same direction as 
and some propagate in the opposite direction. 
> 0) is MXD. For MXD scheme the packets 

group velocity, the wave packets with higher 
small amplitude. 

the e x a c t  solution ( 1 . 1 )  does, some are standing, 
The scheme for the case a > a0(a0 = 0. 1291) (c  
with lower and moderate wave numbers have faster 
wave numbers have slower group velocity but with 

2 Improvement of resolution of shock with GVC 

2.1 Scheme construction 
We try to use the parameter a to control the group velocity of wave packets in numerical so- 

lutions. For improvement of resolution of the shock it is reasonable to use SLW scheme in front of 
the shock, and FST scheme behind the shock. Scheme ( 1 . 2 )  with ( 1 . 6 )  for a = 0 or small a is 
SLW, and it is MXD for large a .  It means that the group velocity of wave packets with very high 
wave numbers cannot be controlled. Fortunately, the dissipation of scheme increases very fast 
with the increasing of the parameter a for high wave number components (fig. 1 ) .  The uncon- 
trollable high frequency components can be suppressed by high dissipation, 

For controlling the group velocity of wave packets difference approximation ( 1 . 6 )  is recon- 
structed as follows: 

• • fl~F.~ , ,~F • ajFj+l + j j + +j  j - l  = d j  ( 2 . 1 )  
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1 1 :t: I , f l ;  2 _ - - -  a • 1 ( 2 . 2 )  a7 = -6 aT+�89 ' Y7 - 6 + aj_~ = ~ -  aT+�89 + i--~' 

d 7  = _ 2 [ , , j + � 8 9  - j-.~ 

P j + I -  Pj I c I (2 .3)  aT+�89 = +  a~ 7~247189 Pi+I + P: ' 

where 1 ~< ao ~< 2, O. 8 ~< Yo ~< 1. SS ( u )  is called shock-structure function and defined as 

( 3 u  02u) (2 4) 
SS ( u ) = sign "~X " O X 2 . 

Suppose we have N-S shock which is continuous and has large gradient (fig. 2 (a )  ) .  It is obvious 

that S S ( u )  > 0  on the left hand side of N-S shock, and S S ( u )  < 0  on the right hand side of N- 

S shock. The reconstructed scheme (1 .2 )  with ( 2 . 1 )  exhibits SLW property downstream of the 

shock, and FST property in wide range of wave numbers upstream of the shock. 

\ 
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Fig. 2. (a )  N-S shock; (b)  behavior of a point-function near extremal point. 

2.2 Accuracy analysis 
~ Ax when the solution is smooth; that is, the newly From (2 .3)  it can be seen that aj +3 

constructed scheme has fourth order accuracy in the smooth region. In practical application the 

function SS ( u ) is approximated as 

SS(uj+�89 = s i g n [ ( u j + l -  u j ) ( /z j+2-  l/,j+l- uj + Uj_l)]. (2 .5)  

It is obvious that SS ( u ) changes its sign across the extremal point and inflection point. Suppose 

c > 0  in (2 .1 )  and y0 = 1 in ( 2 . 3 ) ,  and we have a point-function as shown in fig. 2 ( b ) .  In 

I > 0 and a 1 = 0, and the difference approximation has the formula this case, we have aj + ~ j _ 

1 2 I F ~ F j §  + ~ F j  + 6 j-i = 8~ - aj+�89 - (Fj+I + F j ) ] .  (2 .6)  

After Taylor series expansion we obtain 

(3-/'/ + 0 aAx2) .  F / A x =  3x : 
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In the smooth region, a ~ A x ,  and the approximation is third order accurate. 

3 Difference approximation for Euler equations 

The Euler equations in vector form are as follows: 

a U  3 f  O, ( 3 . 1 )  
3-~ + 3x = 

where U = [ p ,  pu,  E]  T, f = [pu ,  pu 2 + p ,  u ( E  + p ) ] T ,  

1 
P - ) 'M~P T '  ( 3 . 2 )  

, 
E = p c~T+ .c~ ? ' ( 7 -  1 ) M ~  ( 3 . 3 )  

M | is the Mach number, 7 is the ratio of specific beats. The density p ,  the velocity u ,  

and the temperature T are normalized by p | , u | and T| respectively, and the pressure p is 

normalized by p | u2**. By using flux splitting we can get a system of equations in split form 

a_f__- a U  af+ + = 0 ,  ( 3 . 4 )  
at + Ox 8x 

where f •  = A • U,  A • = S - 1 A  • S ,  A is the Jacobian matrix, A = A § + A-  , S is the matrix 

consisting of eigenvectors of matrix A. The tridiagonal matrix A ~ has elements A ~ = ( Ak + 

I A ~ I ) / 2 ,  A1 = u ,  A2 = u -  c ,  A3 = u +  c ,  c is the sound speed. S S ( p )  is used to control 

the group velocity of wave packets. After spatial discretization we obtain a system of ordinary dif- 

ferential equations which is solved with three-stage Ronge-Kutta method. 

In Harten TVD scheme with second order of accuracy in the smooth region five points are 

used, and the accuracy is reduced at the extremal points. Besides, matrix operations are needed. 

For the present method also five points are needed but with fourth order of accuracy in the smooth 

region without matrix operations. The method can be used to solve multi-dimensional problems 

easily. 

4 Numerical experiments 

4.1 One-dimensional steady state shock problem 

The one-dimensional Euler equations are discretized by using fourth order compact scheme 

with GVC. In computation the initial conditions are as follows: 

[uniform incoming flow 0 .00  ~< x < 0 . 4 5 ,  

f = / l inear  interpolation 0 .45  ~< x < 0 . 5 5 ,  ( 4 . 1 )  

t R - H  relations 0 .55  ~< x ~< 1 .00 ,  

w h e r e f = p ,  u,  T ,  I N = I O 1 ,  A t / A x = 0 . 2 5 ,  a 0 =  1, Y0 = 0 . 9 .  Two eases are computed. 

One is for M| = 2 ,  and the other one is for M| = 5 .  The results are given in fig. 3. We see 

that the resolution of the shock is quite good. 

4 . 2  Sod' s shock-tube problem 

The tube extends from x = 0 to x = 1 and is divided by 99 equal ceils. The gas is initially 
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Fig. 3.  Steady state shock solutions. ( a )  M| = 2 ;  (b )  M| = 5 .  

at rest with p = p = 1, u = 0 in [ 0 , 0 . 5 ]  and p = 0 . 1 ,  p = 0.  125,  u = 0 in [ 0 . 5 , 1 ] .  In com- 

putation a0 = 1,  70 = 0 . 9  are used.  The computed results with GVC at t = 0 . 1 4  are shown in 

fig. 4 .  
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Fig. 4 .  Solutions of Sod' s shock-tube problem at t = O. 14. 

4 . 3  Two-dimensional shock reflection 

The fourth .order compact scheme with GVC which approximates the Euler equations is used 

to solve two-dimensional shock reflection problem. The incident shock angle 0 = 29 and the free 

stream Mach number is 2 . 9 .  The mesh grid system is X x Y = 81 x 41.  The computed pressure 

distributions at y = 1 / 4 ,  2 / 4  and 3 / 4  are given in fig. 5 .  We can see that the resolution of the 

shock is much improved. 

4 . 4  Vortex-shock interaction 

In ref. [ 13 ] a sixth order compact scheme was used to simulate the near field sound gener- 

ated by vortex-shock interaction with computation grid points 1044 x 1170.  With less grid points 

oscillations are produced in the numerical solutoins. The same problem is computed here. The 

inviscid terms in the N-S equations are approximated with the fourth order compact difference re- 

lation with GVC, and the viscous terms are approximated with a symmetrical compact difference 
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relation. Initially a standing shock is located at x = 

- 0 . 1 .  A pair of vortices are located upstream, and 

are going through the shock. The computational do- 

main is [ - 6  , 21] in x direction and [ - 12, 12] in 

y direction. Near the origin of coordinates ( 0 , 0 )  a u- 

niform fine mesh is used in both x and y directions. 

In far field from the origin a uniform coarse mesh is 

used, and between the fine and the coarse meshes the 

spatial increment is variable. The coordinate transfor- 

mation is continuous and has continuous first deriva- 

tive. In computation the uniform incoming flow has 

Mach number M | = 1 .29 ,  Re = 400 as used in ref. 

[ 13].  The vortex is assumed to have velocity distribu- 

tion as follows: 
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Fig. 5 .  Pressure distribution at y = 1 / 4 ,  2 / 4  and 

3 / 4  for shock reflection problem. 

u o ( r )  = M v r e x p [ ( 1 -  r 2 ) / 2 ] ,  

u r ( r )  = 0, ( 4 . 2 )  

where r is the distance normalized by the radius of the vortex from the considered point to the 
center of vortex. The tangential velocity component uo and the radial velocity component Ur are 

normalized by the upstream sound speed a | . The Mach number Mr of the vortex is defined by 
M~ = uo=~/a | where Uo=~ is the maximum tangential velocity at r = 1. The initial pressure and 

density distributions are expressed by El3] 

1[ 7 -1  
p ( r )  = -~ 1 -  7 M ~ e x p ( 1 -  , ( 4 . 3 )  

_Z._ 

p ( r )  = [ 1 -  7 -  1M~exp( 1 _ r2)] r - l  ( 4 . 4 )  
7 

where 7 = 1 .4  denotes the ratio of specific heats. The density and the pressure are normalized by 

p| and p| u 2 . In present computation M~ = 0 .39 .  In fig. 6 ( a )  are given contours of pressure 

difference Ap = (p  - p, ) / p  **, Ma - 1 without GVC where p, is the pressure downstream of the 

shock without interaction, and Ma is the local Mach number. In fig. 6 ( b )  are given the corre- 
sponding results with GVC. The solid lines are for Ap > 0 and Ma - 1 > 0,  the dash lines are for 
Ap < 0 and M~ - 1 < 0.  From the computed results it can be seen that the resolution of the shock 

can be improved much with GVC. 

5 Conclusion 

( i )  According to the reason of oscillation production in numerical solutions the fourth order 
accurate compact scheme is modified with group velocity control in order to improve the resolution 
of the shock. 

(ii) The new developed scheme is simple, has less stencil of grid points, and is useful to 
improve the resolution of the shock. 

(iii) The new method is used to solve model aerodynamic problems. Numerical experiments 
show that the resolution of the shock can be improved much. 
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Fig. 6. Contours of pressure difference (a) and M~ - 1 (c)  at t = 5 without GVC ; contours of pressure differ- 

ence (b) and M. - l ( d )  at t = 5 with GVC. 
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