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A numerical model is proposed to simulate fracture induced by the coalescence
of numerous microcracks, in which the condition for coalescence between two
randomly nucleated microcracks is determined in terms of a load-sharing
principle. The results of the simulation show that, as the number density of
nucleated microcracks increases, stochastic coalescence first occurs followed by
a small fluctuation, and finally a newly nucleated microcrack triggers a cascade
coalescence of microcracks resulting in catastrophic failure. The fracture profiles
exhibit self-affine fractal characteristics with a universal roughness exponent,
but the critical damage threshold is sensitive to details of the model. The
spatiotemporal distribution of nucleated microcracks in the vicinity of critical
failure follows a power-law behaviour, which implies that the microcrack
system may evolve to a critical state.

1. Introduction

Most failures in disordered materials such as rock, ceramics, composites, etc.,
involve a variety of processes occurring over many scale lengths from microscopic
to macroscopic. Generally speaking, catastrophic fracture in these materials is the
result of a sequential process of nucleation, growth, and coalescence of numerous
microcracks initiated at micro- (or nano-) scales. Material failure, as an important,
typically nonlinear, dynamic phenomenon, has attracted much attention from
physicists for a long time [1, 2]. Especially during the last two decades or so, several
remarkably ‘‘universal’’ scaling behaviours in fracture processes have been discov-
ered. For example, the fracture surface of metals was observed to exhibit fractal
characteristics, and its topology is usually self-affine with universal roughness
exponents [3–7]. Acoustic emission analyses of micro-fracture processes have
revealed power-law distributions and critical phenomena [8–13]. All these
discoveries can be viewed as hallmarks of the fracture process being a complex
phenomenon with features of adaptation, self-organization and emergence.
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To elucidate the underlying physical mechanisms in such a complex process, we
must understand not only the threshold conditions that trigger this process, as in
traditional fracture mechanics, but also the dynamics by which it proceeds.
The concepts used for treating complex systems, such as those of fractals or multi-
fractals, percolation, and renormalization group theory are instructive for the
investigation of multi-scale fracture [14–17].

Several simple models, such as random-fuse and fibre-bundle-network models,
have been proposed for pattern formation in deformation and fracture processes, in
which the stress redistribution induced by failure of individual elements has been
considered [18, 19]. Unfortunately, very large amounts of computer time, even on
supercomputers, are required to obtain a cracking pattern containing just a few
thousand broken bonds, owing to the lack of efficient algorithms. It seems unlikely
that a substantial improvement can be made using presently available computer
resources [18]. In addition, many aspects associated with the fracture process itself,
especially in cases where disorder is important and may even govern the final
catastrophic event, are still unclear [2, 20]. In this paper, a simple two-dimensional
(2D) numerical model is proposed to simulate the fracture arising from the
coalescence of randomly nucleated microcracks. We will concentrate mainly on
the statistical properties of the collective evolution of numerous microcracks, and
their spatiotemporal activity in the vicinity of a critical failure.

2. Model

Based on experimental findings, we developed a 2D evolution-induced catastrophe
model to investigate the effect of disorder at the microscopic scale on a fracture
process [21–23]. The model involves two main processes: microcrack nucleation
and coalescence. The nucleated microcracks were randomly distributed on a 2D
lattice, which contained various microstructures, such as second-phase particles,
inclusions, and flaws etc. The coalescence condition between two neighbouring
microcracks can be approximately determined by mechanical analysis. As an exam-
ple, let us consider a simple dynamics of damage evolution, namely a load-sharing
principle where the load supported by a broken part is shared by its two neighbour-
ing intact parts. Here, the mean stress on the ligament with distance d between two
neighbouring microcracks can be represented as ��� ¼ 1þ �cc=dð Þ�0, where �0 is
the nominal uniaxial stress and �cc is the average length of two microcracks
(see figure 1). Provided that the angle � between the orientation of two microcracks
and the line joining their tips satisfies the condition |�|� p/2, the two neighbouring
microcracks will coalesce when the mean stress ��� achieves a critical value �c.
Thus, the critical coalescence condition is given by:

r ¼
d

�cc
� rc ¼

�0
�c � �0

: ð1Þ

For simplicity, the probability of microcrack coalescence was assumed to be
independent of the angle, �, and the length of the coalesced crack was approximated
by its projection normal to the loading direction. Furthermore, the stress level can be
indirectly calculated from the crack density evolution versus time relationship.
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Here, it is noted that in order to understand easily the collective behaviour relating
to the coalescence of microcracks, some simplifications or even oversimplifica-
tions were introduced in the model. More exactly, the coalescence condition in
equation (1) should be calculated based on the stress intensity factors at each
crack tip [24, 25]. Meanwhile, the nominal (normal or uniaxial) stress was assumed
to be a scalar rather than a tensor through the geometrical approximation made for
the coalesced microcracks. Clearly for some special structures of microcracks, such
as a staircase-like distribution where the coalescence is mainly caused by the shear
stress, suitable changes to the model are needed.

If the fundamental details of the damage evolution, for example, the size dis-
tribution of the nucleated microcracks and the coalescence conditions, are known,
the model can be well applied to simulate a fracture process. In a case study on the
spallation of an aluminium alloy at high-speed impact, the simulation results were
in good agreement with the real crack patterns [21]. More details of the numerical
model are discussed in references [22, 23]. The dynamics used in the simulations can
be briefly summarized as follows:

(1) A newly nucleated microcrack is added randomly on a 2D lattice, with an
orientation and length chosen from a given size distribution.

(2) The coalescence condition of equation (1) for a newly nucleated crack with
all pre-existing ones, is checked in turn, starting from the closest pair. If the
left tip of the new crack is located below or above the right tip of an existing
crack (or vice versa), it is assumed that the new crack is shielded by the old
one, and coalescence will not occur.

(3) Step (2) is repeated until there are no more cracks satisfying the coalescence
condition and, at the same time, there is no crack spanning the whole lattice.
Then, one returns to step (1).

3. Results

A typical damage evolution process in a 1000� 1000 lattice is shown in figure 2,
where a uniform length distribution of nucleated microcracks with a mean length of
2 (lattice units) and a critical coalescence condition rc¼ 1 were used in the simulation
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Figure 1. Schematic showing stacked microcracks nucleated, horizontally and randomly, in
a two-dimensional lattice. Two microcracks shield and attract each other in cases A and C,
respectively.
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study [23]. It is obvious that there are three different phases (stages) in this process.
(i) An initial phase in which nucleated microcracks are too sparse to cause coales-
cence, and the number of microcracks increases linearly with time; (ii) a stable phase
in which a significant proportion of newly nucleated microcracks fall close enough to
an existing crack-tip to cause coalescence. Such a coalescence event has two effects:
(a) it enlarges the influence zone around the crack-tip and so increases the chance
of a coalescence event, and (b) it increases the area shielded by the coalesced crack.
In the latter case, if a new microcrack appears in the shielded region, it does not
coalesce. These two effects balance each other producing a near-stable regime.
(iii) A critical phase: after a certain time, the influence zones extend and overlap
to such an extent that a newly nucleated microcrack (a small fluctuation) will
trigger a cascade coalescence of microcracks and result in a catastrophic failure
(an avalanche). However, we cannot predict, a priori, the exact position at which
the final fracture will appear (figure 2).

As is well known, fractography is a useful tool to examine possible failure
mechanisms of a material since the fracture surface more or less records the features
created during the fracture process. For a given fracture surface, the roughness index
(Hurst exponent) � is defined by:

w ¼ max hi x
0

� �
�min hi x

0
� �� �

� L&, ð2Þ

where hi(x
0) is the height of the fracture profile in a window with length L, and

x0 2 (x, xþL). The roughness exponent � lies between the values 0 and 1, and is
related to the fractal dimension df via the relation, df¼D� �, where D is the
Euclidean dimension [7]. In their pioneering work, Mandelbrot et al. [3] showed
that the fracture surface of metals exhibits fractal characteristics, and that the fractal
dimension can be used as a measure of both the roughness of the fracture surface and
the fracture toughness. It was conjectured that the value of roughness exponent
�� 0.8 (usually between 0.7 and 0.9 in most experiments) is likely to be a universal
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Figure 2. Patterns of microcrack coalescence in a 1000� 1000 lattice: (a) just before fracture;
and (b) a newly nucleated microcrack triggers the catastrophic failure.
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exponent in the micro-scale range, whereas �� 0.5 in the nanoscale range. This is,
however, still a controversial topic [7].

As shown in figure 3, there is indeed such a power-law, w�L� with
�¼ 0.77� 0.02, which seems independent of the details used in the model, such as
the size distribution function of the nucleated microcracks (this is whether it is uni-
form, normal, Weibull, power-law, or exponential with a given characteristic length)
and the critical coalescence conditions [21, 22]. Thus, the fracture surface obtained
from simulations has self-affine fractal characteristics. Several models were suggested
to describe the universal range, but there is still no clear physical picture why the
roughness exponent should be about 0.8 in the micro-scale range [6, 26, 27]. In
particular, the universal range of these power laws in different dimensions should
be further studied, such as in reference [28].

It is worth noting that the results cannot be directly extended to cases with the
extremely critical coalescence conditions rc� 1 or rc� 1 [22]. Intuitively, such a
microcrack evolution process is very similar to percolation, and final catastrophic
failure corresponds to the occurrence of an infinite cluster at the critical concentra-
tion [14]. This leads to another interesting parameter, namely the damage at critical
failure, which can be defined as either the accumulative number or the length (area or
volume in three-dimensional case) of the nucleated microcracks. Here, we use the
former of these definitions. As shown in figure 4, the threshold damage value is not
a constant as in conventional percolation, but is sensitive to details of the model. The
threshold density of the number of accumulated crack at rc¼ 1 follows a normal
distribution with a mean �nnc ¼ 1731.29 and standard deviation ��¼ 424.47 (see inset
in figure 4). The smaller the value of rc, the narrower is the variance of threshold
damage distribution. Thus, percolation can be viewed as an approximation to the
fracture process in an extremely disordered media, i.e., rc� 1. In fact, as indicated

Figure 3. Log–log plot of fracture profile roughness w(L) versus window size L for three
cases of different critical coalescence conditions: rc¼ 1, 2, and 3, where the fitted slope using
equation (2) (dotted line) is �¼ 0.77� 0.02.
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by equation (1), fracture induced by microcrack coalescence is controlled by the
non-local, long-range, stress redistribution.

Next, we focus attention on the final stage of damage evolution and examine
whether fracture is a kind of critical phenomena. Or conversely, we ask to what
extent the predictability of a final catastrophic failure is dependent on the sensitivity
of the microcrack system to disorder or stochastic fluctuation [29, 30]. For this
purpose, we just randomly change the spatial position of the nucleated microcrack
that induces the avalanche (catastrophic failure), and observe the spatiotemporal
distribution. That is, we wish to find both the waiting time to the next critical
point and the new spatial position of a microcrack that triggers the final avalanche.
For simplicity, we assume that the waiting time is proportional to the number of
nucleated microcracks. As shown in figure 5, the waiting time decays exponentially,
but there is a long tail of power-law type over a large time interval �t. The cumu-
lative distribution of waiting time can be described by:

N > �tð Þ � ð�tÞ�� 1þ expð�"�tÞ½ 	, ð3Þ

where "� 0.0045. Thus the exponential term is important only for the small time
interval �t, and the time region of importance is about equal to the variation of
the critical crack numbers (see inset in figure 4). Far from this domain, we have
a power-law distribution, N (>�t)� (�t)��. Moreover, the spatial positions of the
next critical microcracks are not uniform, and the cluster distribution follows a
power-law, N(r)� r�� with �� 1, where r is the coarse-grained size and N(r) is the
number of windows in which there is at least one critical micro-crack (see figure 6).
Here, the spatiotemporal power-law scaling strongly implies that the collective
evolution through microcrack coalescence may be at a critical state [31, 32].

Figure 4. The relative deviation ��c (the standard deviation/mean ratio) of threshold density
distribution versus the coalescence condition rc, where the inset shows the density distribution
of the threshold number of nucleated microcracks in 1000 simulations (rc¼ 1) with the
mean �nnc ¼ 1731.29 and the standard deviation ��¼ 424.47.
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Unlike sand-piles models, the driving force here is a newly nucleated microcrack
per time-step from a prescribed distribution, which is randomly distributed in the
lattice.

4. Discussion and conclusions

We briefly discuss the implications of these results for the predictability of a
catastrophic failure. As we know, a self-organized critical system lies on the verge

Figure 6. Spatial distribution of critical nucleated microcracks versus coarse-grained length
r in 1000 simulations with critical coalescence condition rc¼ 1, where the slope of dotted line
is �1. The inset shows the spatial pattern of nucleated microcracks that trigger catastrophic
failure.

Figure 5. Cumulative number distribution of newly nucleated microcracks �n (that is,
difference from the original critical number) in 1000 simulations with critical coalescence
condition rc¼ 1. As �t (here, �t��n) increases, the distribution decays by an exponential
law (solid line, "� 0.0045), but follows a power-law (dotted line, �� 8.0) for large �t.
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of chaos, where the uncertainty grows algebraically rather than exponentially.
That is, our ability to forecast is gradually lost, but much more slowly than for a
chaotic system [33]. In some sense, catastrophic failure due to the coalescence of
numerous microcracks can be imagined to be a snapshot of self-organized critical
phenomena. Thus, it may still be possible to predict some properties in the cata-
strophic fracture of disordered media. For instance, some precursors approaching
critical failure were found from an analysis of acoustic emission signals [8, 10].
Also discovered were several general features that might be significantly enhanced
near catastrophic failure [29, 30]. Furthermore, the scaling behaviours, as discussed
above, highlight the possibility that the material property at the macroscopic scale
could be insensitive to details on the microscale. Recent studies indeed showed that
the strengths of electroceramics, like zinc oxide, became insensitive to flaws at
the micro-scale because of the influence and interaction of various factors [34, 35].
However, the flaw tolerance concept cannot be considered to be of general validity,
even at the nanoscale, as demonstrated in [36].

In conclusion, a simple numerical model has been proposed to simulate the
fracture process due to the collective evolution of numerous microcracks.
Simulation results show that fracture profiles exhibit self-affine fractal characteris-
tics, and their roughness exponents are likely to have a universal value, which is
independent of details used in the model, such as the size distribution of nucleated
microcracks, coalescence conditions, etc. However, in contrast to traditional
percolation theory, the critical damage threshold is sensitive to the details, and
the spatial position of a microcrack triggering the final fracture cannot be predicted
a priori. The spatiotemporal distribution of nucleated microcracks in the vicinity of
critical failure follows a power-law scaling, and the system may lie in a critical state,
which sheds some light on the predictability of catastrophic fracture in disordered
materials.
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