
A viscoelastic constitutive model with nonlinear
evolutionary internal variables

P. J. Wei, Beijing, and J. K. Chen, Yangzhov, China

Received July 24, 2002; revised December 18, 2002
Published online: August 18, 2003 � Springer-Verlag 2003

Summary. Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable

continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to

Biot’s strain is introduced, and a nonlinear evolution law for these internal variables is suggested. The

proposed model may be considered as an extension of the network theory of rubber elasticity to take the

viscous effects into account. In order to verify the validity of the present model, uniaxial tension tests for

HDPE are carried out at different strain rates. The prediction of the present model shows a good

agreement with the experimental data. Finally, a discussion of the present constitutive model is given. It is

found that the present constitutive model is more flexible to describe the strain rate sensitivity of polymeric

materials in a wide range of strain rates.

1 Introduction

The nonlinear viscoelastic constitutive relations are often used to describe the mechanical

behavior of polymeric materials. Several viscoelastic constitutive theories have been pro-

posed in the past years [1]–[8]. Among these theories, the internal variable theory, which is

based on thermodynamic framework, may be considered to be a widely accepted one [5]–[8].

Holzapfel and Simo [7] proposed a fully coupled thermo-mechanical constitutive model

which applied to highly deformable bodies with viscous dissipation. The Helmholtz free

energy in their constitutive model depends not only on temperature and strain, but also

on internal state variables. Nevertheless, Huang et al. [8] pointed out that if a quadratic

expression in terms of internal variables in the expression of the free energy is used,

the corresponding constitutive relation obtained can only be interpreted as a combination of

linear spring and linear dashpot, so the nonlinear elastic effect on the evolution of internal

variables cannot be included. In order to overcome the shortcomings, a new expression of

the free energy motivated by the molecular network analysis for solid polymers is con-

structed in [8] to take into account the nonlinear elastic behavior. However, the evolution

laws of the internal variable in their constitutive models are assumed to obey the Onsager

reciprocal relation which is not enough flexible to describe properly the mechanical behavior

of polymeric materials at a wide range of strain rates. In the present paper, a three-

dimensional constitutive model, which can describe the viscoelastic response of a highly

deformable continuous medium at different strain rates, is suggested. A set of second rank

tensorial internal state variables corresponding to Biot’s strain (engineering strain) is in-

troduced to extend the network theory of rubber elasticity to incorporate the viscous effects.
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A nonlinear evolution equation for these internal variables is proposed instead of the

Onsager reciprocal relation and makes the present model more flexible to describe the strain

rate sensitivity. In order to confirm the validity of the proposed model, Uniaxial tension

tests for HDPE are carried out at different strain rates. The prediction of the present model

shows a good agreement with the experimental data. Finally, The effects of various model

parameters on describing strain rate sensitivity of materials are discussed. It is found that

the present model is more flexible to describe the strain rate sensitivity of polymeric material

in a wide range of strain rates.

2 Formulation of the present viscoelastic constitutive model

Solid polymers consist of long chains of macromolecules that are connected at junctions

provided by the chemical cross-links between macromolecules. A vector from one end of a

chain to the other is called the end-to-end vector of a chain. In light of entropy elasticity of

rubber material, the deformation of the end-to-end vector induces the change of configuration

of network and therefore contributes to the change of entropy significantly. In order to gen-

eralize the network theory to take the viscous effect into account, a set of second rank tensorial

internal state variables corresponding to Biot’s strain is introduced to describe the viscous

behavior of these chains. The assumption of affine deformation adopted in the network theory

of rubber elasticity is reserved.

Suppose that there are M kinds of chains in the macromolecular network, and the viscous

dissipation of the a-th kind of chains can be described by a second rank symmetric tensor na

called the a-th internal variable. The stretch of an individual chain, k, directed along a unit

vector l0 corresponding to the undeformed configuration, and the a-th effective stretch, k̂ka, may

be given by

k ¼ ðl0 � K2 � l0Þ
1
2; ð1Þ

k̂ka ¼ ðl0 � ðK� naÞ2 � l0Þ
1
2; ð2Þ

where K and K� na are the right stretch tensor and the a-th effective right stretch tensor,

respectively. Equation (2) implies that the viscous dissipation of the a-th kind of chains may be

described by the well-known Maxwell model with a spring in series with a dashpot. If the strain

energy of a single chain is denoted by wv
aðk̂kaÞ, which satisfies wv

að1Þ ¼ 0, then the total strain

energy of the a-th kind of chains may be given by

Wv
a ð�kkaÞ ¼ Na

Zp

0

du
Z2p

0

wv
aðk̂kaÞhaðu;xÞsinu dx; ð3Þ

where Na is the total number of the a-th kind of chains. haðu;xÞ is the initial orientation

distribution function of the a-th kind of chains in the spherical coordinates ðr;u;xÞ,
and satisfies the normalized condition

R p
0

R 2p
0 haðu;xÞsinu du dx ¼ 1. For isotropic visco-

elastic material, the initial orientation distribution function is given by ha ¼ 1=4p. Fur-

thermore, we assume that the material is compressible and the total strain energy can be

expressed by

W ¼ WðgÞ þ
XM
a¼1

Wv
a ðk̂kaÞ; ð4Þ

218 P. J. Wei and J. K. Chen



where g ¼ detK is the third invariant of the right stretch tensor K, and WðgÞ is the strain energy

of dilatation deformation. In the following, only two kinds of chains in the molecular network

are considered, one with viscous dissipation, Wv
1 ðk̂kÞ, describing the strain rate sensitivity of

polymeric material and another without viscous dissipation, W0ðkÞ, describing the mechanical

behavior at quasi-static loading. The specific forms of strain energy WðgÞ;W0ðkÞ and Wv
1 ðk̂kÞ are

assumed to be

WðgÞ ¼ k
2
ðln gÞ2; ð5:1Þ

W0ðkÞ ¼
3le2

0

mþ 1
1þ

e2
eff

e2
0

" #mþ1
2

�1

8<
:

9=
;; ð5:2Þ

Wv
1 ðk̂kÞ ¼

3le2
0

m0 þ 1
1þ

�ee2
eff

�ee2
0

" #m0þ1
2

�1

8<
:

9=
;; ð5:3Þ

where k; l; �ll; e0; �ee0;m and m0ðm;m0 � 1Þ are material parameters, e2
eff ¼ ð2=3ÞðK� IÞ : ðK� IÞ

and �ee2
eff ¼ ð2=3ÞðK� n� IÞ : ðK� n� IÞ. In view of the following relations:

@g

@E
¼ gK�1; ð6:1Þ

@eeff

@E
¼ 2

3

E

eeff

; ð6:2Þ

the engineering stress T, which is conjugate to Biot’s strain E ¼ K� I, may be expressed

as

T ¼ @W

@E
¼ kðln gÞK�1 þ 2l 1þ

e2
eff

e2
0

" #m�1
2

ðK� IÞ þ 2�ll 1þ
�ee2

eff

�ee2
0

" #m0�1
2

ðK� n� IÞ: ð7Þ

The generalized stress Q, conjugate to the internal variable tensor n, is similarly given

by

Q ¼ � @Wv
1

@n
¼ 2�ll 1þ

�ee2
eff

�ee2
0

" #m0�1
2

ðK� n� IÞ: ð8Þ

The evolutionary equation of n is usually assumed to obey the Onsager reciprocal

relation

g _nn ¼ Q; ð9Þ

where g is the viscous coefficient of the material. However, the Maxwell model with a nonlinear

spring in series with a linear dashpot could not describe flexibly the rate sensitivities of the

material in a wide range of strain rates. In the present model, a nonlinear evolution equation of

n is suggested as follows:

_nn ¼ 1

g
1þ

q2
eff

q2
0

 !n�1
2

Q; ð10:1Þ

njt¼0¼ 0; ð10:2Þ

where g; q0 and nð�1) are material parameters and q2
eff ¼ ð3=2ÞQ : Q.
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3 Comparison of predicted results with experimental data

There are ten material parameters in the present constitutive model to describe the nonlinear

viscoelastic response of polymeric material, i.e., Lamé’s constants k; l and �ll, the viscous co-

efficient g, the reference strain e0 and �ee0, reference generalized stress q0, nonlinear index m and

m0 of springs and nonlinear index n of the dashpot, respectively. It is expected that the me-

chanical response at various strain rates as well as quasi-static loading could be described by the

present constitutive model. In order to verify the validity of the present model, uniaxial tension

tests for HDPE are carried out on Instron 8510 with the geometry of the tensile specimens

referred to ASTMD 638 type M. HDPE is in glass transition under the condition of room

temperature. The influence of viscosity on the mechanical properties is rather obvious at the

test temperature 18 � 2 �C. Three strain rates are performed in the tensile experiments, i.e.,
_kk1 ¼ 1=60 ð1=sÞ; _kk1 ¼ 1=150 ð1=sÞ, and _kk1 ¼ 1=600 ð1=sÞ, respectively. The experimental data

indicate that the higher loading rate may lead to the increase of rigidity and strength of the

material. The present model is used to fit the experimental data. The least-square procedure

based on a modified Levenberg-Marquardt algorithm is performed to obtain the model

parameters, i.e., k ¼ 0:54 ðGPaÞ; l ¼ 0:36 ðGPaÞ; �ll ¼ 0:25 ðGPaÞ;m ¼ 0:15;m0 ¼ 0:1; e0 ¼
0:025;�ee0 ¼ 0:03; g ¼ 0:275 ðGPa � sÞ;n ¼ 7:0; q0 ¼ 15:0 ðMPaÞ. Curves of the model prediction

and the experimental data for three tensile strain rates are shown in Fig. 1. It is shown that the

model prediction is in good agreement with the experimental data.

4 Discussion of the present constitutive model

It is assumed in Eq. (7) that the stress-strain behavior of polymeric solids can be decomposed

into a quasi-static nonlinear elastic response and a rate-dependent response. The quasi-static

nonlinear elastic response is described by a nonlinear spring, and the rate-dependent response

by a generalized Maxwell model with a nonlinear spring in series with a nonlinear dashpot. The

present constitutive model can be clearly illustrated with Fig. 2. When the nonlinear index

m0 ¼ n ¼ 1, the generalized Maxwell model reduces to the standard Maxwell model with linear

spring and dashpot and single relaxation time s ¼ g=�ll. However, the relaxation time s in the

present generalized Maxwell model is not a constant but dependent upon the deformation
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process since both the tangent modulus of the nonlinear spring and the apparent viscosity

coefficient of the nonlinear dashpot change in the deformation process. The relaxation time is

an important parameter in a viscoelastic model, which affects not only the response history but

also the range of rate-sensitivity. The objective of the present discussion is to understand how

the relaxation time affects the material response and why the present constitutive model can

describe the material response more flexibly. It is recognized that the relaxation time is related

to the mode of micro-structure motion. Because there are many motion elements with different

sizes in molecular networks, more than one relaxation time constant is usually needed to

describe the mechanical behavior in the full range of strain rates. It results in the generalized

Maxwell model, the combination of many Maxwell elements with relaxation time spectrum.

However, too many material parameters in a constitutive model are inconvenient for practical

application. An appropriate compromise between minimizing the material parameters and

simulating closely the material response is inevitable. Yang et al. [9] used a Maxwell model with

single relaxation time constant to describe the large deformation response of an incompressible

rubber material under high strain rates, and found that the range of rate-sensitivity captured by

their model was 10�2 � 100, i.e. two orders of magnitude, for non-dimensional strain rates
_kk ¼ s _kk. Wang et al. [10] proposed a constitutive model with two relaxation time constants,

called ‘‘ZWT’’ model, whereby one relaxation time was used to describe the mechanical be-

havior at high strain rates (102 � 103s�1) and another one to describe the mechanical behavior

at low strain rates (10�4 � 10�1s�1). The range of rate-sensitivity captured by their model was

examined and it was pointed out that a relaxation time has an effective influence domain of

about 4.5 orders of magnitude. It is noted that the range of rate-sensitivity is different in the two

models mentioned above. The difference results from the introduction of a nonlinear spring in

the model of Yang et al. instead of the linear spring in the ‘‘ZWT’’ model. The observation

reveals the fact that the generalizedMaxwell model with nonlinear spring can only describe rate-

sensitive behavior in a less narrow range than a standard Maxwell model with linear spring and

dashpot. In order to investigate in detail the effects of a nonlinear spring and dashpot on the

range of rate-sensitivity, the response of eleven strain rates by a standard Maxwell model and

generalized Maxwell model with nonlinear spring or dashpot is simulated and the numerical

results are shown in Fig. 3. The stress and the strain rates in the figures are nondimensionalized

by the initial elastic modulus of the spring and the initial relaxation time, respectively, but the

same symbols are used, namely, T=�ll) T and _kk � s) _kk. It can be seen clearly from Fig. 3b that

the range of rate-sensitivity of a generalized Maxwell model with a nonlinear spring shrinks

significantly, and further observation shows that the range of rate-sensitivity shifts toward low

strain rates. It may be explained by the change of relaxation time in the deformation process.

Considering that the viscosity coefficient of a dashpot does not change but the tangent modulus

of a nonlinear spring decreases gradually during deformation, it is found that the relaxation

time increases gradually during deformation, and this results in the shift of the range of rate-

sensitivity toward the low strain rates. The numerical simulation results by another generalized

Maxwell model with linear spring but nonlinear dashpot are shown in Fig. 3c. Surprisingly, the

range of rate-sensitivity extends distinctively as compared to the standard Maxwell model. This

1 (  )vW λ̂ η

 

W(g)+W0(λ) 

Fig. 2. The schematic interpretation of

the present constitutive model---- one
generalized Maxwell model in parallel

with one nonlinear spring
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phenomenon can similarly be explained by the change of relaxation time during deformation.

The change of the apparent viscosity coefficient of a nonlinear dashpot makes the relaxation

time decreasing gradually during deformation, and therefore makes the range of rate-sensitivity

extended significantly. These observations give an implication that the generalized Maxwell

model with nonlinear spring describes rate sensitivity in a narrow range as compared to the

standard Maxwell model. However, the generalized Maxwell model with nonlinear dashpot can

describe the rate sensitivity in a wider range.

The present constitutive model includes a generalized Maxwell model with nonlinear spring

and nonlinear dashpot. Because of the continuous change of the tangent modulus of the non-

linear spring and the apparent viscosity coefficient of the nonlinear dashpot during
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deformation, the effect of the initial relaxation time on rate sensitivity becomes another con-

cern. Three initial relaxation times, with the other material parameters fixed, are simulated

numerically and illustrated in Fig. 4. It is shown clearly that the range of rate-sensitivity shifts

toward low strain rates when the initial relaxation time increases (compare (a) with (b)) and

toward high strain rates when the initial relaxation time decreases (compare (a) with (c)).

The last concerns are the effect of the nonlinear index on rate-sensitivity. Figures 3c, 4a

and 5a correspond to three nonlinear indices of the spring, i.e., m0 ¼ 1:0; 0:5; 0:3; with other

material parameters identical. It is observed that decreasing the nonlinear index of the spring

results in the reduction of the range of rate-sensitivity. Figures 3b, 5b and 4a correspond to

three nonlinear indices of the dashpot, i.e., n ¼ 1; 3; 5; with the other material parameters
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identical. It is observed that increasing the nonlinear index of the dashpot results in the

extension of the range of rate-sensitivity.

5 Concluding remarks

By introducing a set of second rank tensorial internal variables corresponding to Biot’s strain,

the network theory in rubber elasticity is extended to incorporate the viscous effects of poly-

meric materials. In order to describe properly the rate-sensitivity of the material, a nonlinear

evolution equation for the internal variables is proposed. The physical explanation of the

present constitutive model is the combination of a nonlinear spring which describes the quasi-

static response and a generalized Maxwell model with nonlinear spring and nonlinear dashpot

which describes the rate-sensitivity response of materials. Uniaxial tension tests of HDPE are

carried out for three strain rates. It is found that the prediction of the present model is in good

agreement with the experimental data. Hence, the present model can describe adequately the

viscoelastic response of polymeric materials at different strain rates. The range of rate-sensi-

tivity is studied in detail for the present model with nonlinear spring and nonlinear dashpot.

The numerical simulation demonstrates that the introduction of a nonlinear spring results in

the reduction of the range of rate-sensitivity and the introduction of a nonlinear dashpot results

in the extension of the range of rate-sensitivity. The standard Maxwell model with linear spring

and dashpot keeps the relaxation time, s ¼ g=�ll, constant. However, in the present generalized
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Maxwell model with nonlinear spring and dashpot, changes of the tangent modulus of the

nonlinear spring and the apparent viscosity coefficient of the nonlinear dashpot in the defor-

mation process result in the change of the relaxation time s, which forms a continuous relax-

ation time spectrum. The investigation of the effect of initial relaxation time demonstrates that

a longer initial relaxation time makes the range of rate-sensitivity shifting toward low strain

rates and a shorter initial relaxation time makes the range of rate-sensitivity shifting toward

high strain rates. In addition, the nonlinear indices of spring and dashpot affect significantly the

range of rate sensitivity. All these observations indicate that the range of rate-sensitivity can be

flexibly changed by adjusting the initial relaxation time and the nonlinear index of spring and

dashpot when the evolutionary law of the internal variables is given. Hence the present con-

stitutive model is more flexible to describe the strain rate sensitivity of polymeric material in a

wide range of strain rates.
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