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Abstract

In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact
region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes
during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled
solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs’ parameter on the pull-off
process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle
(π/2 is the maximum value), smaller a/R or larger nondimensional parameter value of �γ/E∗R. Relations among the contact half width, the
external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the
present paper as basic solutions are helpful and applicable for experimenters and engineers.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Contact mechanics starts from Hertz theory in 1882 [1],
in which two elastic bodies are pressed to contact each other
by external loading without considering adhesion, i.e., mole-
cule interactions between two adjacent bodies. However, as the
contact size decreases, adhesion between the bodies becomes
significant, especially for clean surfaces and lightly loaded sys-
tems. This aspect of contact mechanics was successfully studied
by JKR theory in 1971 [2]. The stress field near the contact edge
in JKR model has a crack-like singularity and the size of the
contact region can be determined by the Griffith energy equi-
librium criterion, which is larger than the contact size predicted
by Hertz theory. The pull-off force in the classical JKR theory
is found to be F = 3πR�γ/2, where R is a combined radius
that can be expressed by the radii of two spheres R1, R2 as
1/R = 1/R1 + 1/R2; �γ is the work of adhesion. Here we can

* Corresponding author. Fax: +86 10 62561284.
E-mail address: chenshaohua72@hotmail.com (S. Chen).
0021-9797/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2006.06.014
find that the pull-off force is independent of the elastic proper-
ties of the solids.

In JKR model, the adhesion force outside the contact region
is not considered. In contrast, Derjaguin et al. [3] considered
the adhesive interactions and developed the classical DMT the-
ory model, but it assumes the same Hertz stress distribution
inside the contact area. The pull-off force is found to be F =
2πR�γ .

It seems that JKR and DMT theories are competitive, which
is explained by Tabor [4] that the JKR theory is especially ap-
plicable for contact between relatively large and soft elastic
bodies and the DMT theory is more appropriate for contact be-
tween small and rigid particles. A unified theory (MD) linking
JKR and DMT models are proposed in 1992 by [5] by extend-
ing the Dugdale model of a plastically yielded crack to adhesive
contact mechanics and the crack-like singularity is eliminated
to keep the continuity of stresses at the contact edge.

After development of these three famous adhesive contact
theories (JKR, DMT, and MD), numerous extensions have
been developed for elastic and viscoelastic bodies, for exam-
ples [6–20], in which it should be mentioned that the two-
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dimensional classical JKR and MD models have been studied
by [8] and [12], respectively.

Most of the existing models on contact mechanics neglect
the tangential tractions or regard the tangential stress as fric-
tional one to uncouple the normal and tangential stresses in
the contact region [21]. Kendall [22] investigated the effects of
shrinkage stress on a brittle interfacial failure of a bonded lami-
nate. Savkoor and Briggs [23] showed that an applied tangential
force can reduce the area of contact between elastic solids. With
the developing of bio-mechanics and bionics, especially for
the gecko and some insects’ adhesion and cell adhesion, con-
tact mechanics is recently used to explain the bio-phenomena
and find the mechanical mechanism in biology. As we know,
the effects of tangential traction in the adhesive contact re-
gion on the pull-off process is negligible when the external
force is normal to the contact interface [21], which results in
many investigations of bio-adhesion using directly the classi-
cal JKR model. For example, Chu et al. [24] showed that the
JKR theory can help predicting the adhesion energy between
two S180 cells; More applications and extensions of adhesive
contact mechanics are relative to the adhesion abilities of gecko
and insects [25–34]. However, the effects of tangential stress
cannot be ignored sometimes, for examples, as cells are pulled
by a micro-pipette aspiration at a slant to measure the adhe-
sion force or geckos (insects) climb on a vertical wall, tangen-
tial traction in the contact regions will work. Otherwise, cells
will slip and geckos (insects) cannot stay on the vertical wall.
Furthermore, recent studies on elastic bodies in nonslipping
adhesive contact with a laterally stretched substrate [35,36] in-
dicate that the substrate strain can have significant effect on the
contact area. The pull-off process of two elastic spheres in non-
slipping adhesive contact under a pair of pulling forces and a
mismatch strain will be influenced by the mismatch strain sig-
nificantly [37].

Inspired by cells pulled by a micro-pipette aspiration obliq-
uely and insects staying on vertical surfaces, the nonslipping
adhesion of an elastic cylinder in contact with an elastic half
space is investigated in the present paper with a pulling force in
an arbitrary direction. Both solids are isotropic materials in the
present study. In contrast to the classical JKR model, both the
normal and tangential tractions in the contact region should be
considered and the focus of the study is on how the pulling an-
gle influences the pull-off contact width and the pull-off force
comparing to the classical JKR theory. Viscoelastic material
to simulate cells and anisotropic bodies to mimic geckos’ (in-
sects’) feet structures are involved in future studies. The results
in the present paper as basic solutions can be useful for engi-
neering applications.

2. Model

The plane strain adhesive contact model is shown in Fig. 1,
in which an elastic cylinder contacts with an elastic half space.
The contact region is assumed to be perfect bonding, where not
only the normal traction but also the tangential one can trans-
fer across the contact interface. An external force F acts on
the cylinder in an angle θ to pull-off the adhesive contact as
Fig. 1. Plane strain model of an elastic cylinder adhesively contacting with an
elastic half plane. F is an external pulling force and θ is the pulling angle.
(E1, ν1), (E2, ν2) are the Young’s moduli and Poisson ratios of the cylinder
and the half plane, respectively. R is the radius of the cylinder. 2a is the contact
width.

shown in Fig. 1. (E1, ν1) and (E2, ν2) are the Young’s moduli
and Poisson ratios of the upper cylinder and lower half space,
respectively. R is the radius of the elastic cylinder. The con-
tact half width is denoted as a, which can be determined by the
dynamic Griffith energy balance criterion as the contact edge
shifts during the pull-off process. As in almost all contact me-
chanics theories [21], the contact width is assumed to be small
compared to the radius of the cylinder such that the deforma-
tion of the cylinder can be approximated by that of an elastic
half space.

Two Cartesian reference coordinate systems (x, y1) and
(x, y2) lie at the center of the contact region with y1 and y2
pointing into the upper cylinder and the lower half space, re-
spectively. The normal and tangential tractions along the con-
tact interface of the cylinder inside the contact area will be
denoted as P(x) and Q(x). The edges of the contact region
resemble two opposing interfacial cracks under plane strain de-
formation.

3. Full coupled solution to the bimaterial contact model

As mentioned in the introduction that in most of the the-
ories, the contact interface only transfers the normal traction,
while the tangential traction is neglected or looked as a friction
traction related with the normal traction. In the present model,
the interface is looked as a prefect bonding, which allows the
transition of both the normal and tangential tractions.

Due to a much smaller contact width in contrast to the cylin-
der radius, the external force can be assumed to act at a remote
point and the tangential force introduces shear tractions which
cause a tangential shift ω of points remote from the contact
area. The contact area moves in the direction of the tangen-
tial force without distortion of shape or size. This means that, if
the interface is not bonded, the two solids would undergo a rel-
ative tangential displacement ω. However, since the interface is
bonded, this relative displacement cannot occur and is instead
compensated by elastic deformation in the two solids, which
causes tangential tractions in the contact area. Here, one can
see that the physical picture for the model in Fig. 1 is very sim-
ilar to an interface crack model, in which two half-infinite edge
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cracks between two dissimilar half spaces are subjected to re-
mote normal and tangential forces. In this case, the continuity
condition of displacements across the contact interface can be
expressed as

(1)

⎧⎨
⎩

ūx1 − ūx2 = ω,

ūy1 + ūy2 = δ − x2

2R
,

|x| � a,

where ūxi (i = 1,2) denotes the tangential displacements on
the surface of each body along the contact line and ūyi (i =
1,2) is the corresponding surface normal displacements. δ is
the relative displacement of the centers of the cylinder and the
half space during contact formation in y direction, which has
the same definition as [21] and the second term at the right hand
in the second equation adopts the parabolic shape assumption
of the upper cylinder.

Using the relative displacement gradients with respect to x

(2)

⎧⎪⎪⎨
⎪⎪⎩

∂ūx1

∂x
− ∂ūx2

∂x
= 0,

∂ūy1

∂x
+ ∂ūy2

∂x
= − x

R
,

and combining the Green functions of an elastic half space
subjected to both normal and tangential tractions yields two in-
tegral equations,

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

π

a∫
−a

Q(s)

s − x
ds − βP (x) = 0,

1

π

a∫
−a

P (s)

s − x
ds + βQ(x) = −E∗x

2R
,

where Q(x) and P(x) are coupled, the effective modulus E∗ is

(4)
1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
,

and

(5)β = 1

2

{
(1 − 2ν1)/μ1 − (1 − 2ν2)/μ2

(1 − ν1)/μ1 + (1 − ν2)/μ2

}

is one of the Dundurs’ parameter [38]. μ1 and μ2 are shear
moduli of each material.

Following a similar analysis in [35], we rewrite Eq. (3) in a
matrix form

(6)
1

π

a∫
−a

A
s − x

f(s)ds + Bf(x) = C,

where the vectors can be expressed as

f(s) =
(

Q(s)

P (s)

)
, A =

[
1 0
0 1

]
= I,

(7)B =
[

0 −β

β 0

]
, C =

[
0

−E∗x
2R

]
.

Introducing the following transformation:

(8)Fk(z) = 1

2πi

a∫
−a

fk(s)

s − z
ds, k = 1,2,

where z = x + iy and i = √−1. Equation (6) can be transferred
to two inhomogeneous Hilbert equations. Solving the Hilbert
equations and combining the boundary conditions

(9)

a∫
−a

P (x)dx = −F sin θ,

a∫
−a

Q(x)dx = −F cos θ

yields the solutions to the interfacial tractions. The whole solv-
ing process is standard but very complex. Similar method has
been used in [35], so that we skip all the details here and present
the final interfacial tractions in the contact region,

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(x) = 2 Re
{
I (x)

} + E∗xβ
2R(1 − β2)

− Im

{
(F sin θ + iF cos θ)(a + x)−r̄ (a − x)−r

π

}
,

P (x) = −2 Im
{
I (x)

}
−Re

{
(F sin θ + iF cos θ)(a + x)−r̄ (a − x)−r

π

}
,

where

(11)

I (x) = −iE∗(a + x)−r̄ (a − x)−r

4πR(1 − β2)

[ a∫
−a

t (a + t)r̄ (a − t)r

t − x
dt

]
,

and r is the stress singularity with an oscillatory index κ

(12)r = 1

2
+ iκ, κ = 1

2π
ln

1 + β

1 − β
.

From Eq. (10), one can see that the tractions in the contact re-
gion are singular, which is very similar to that of interface crack
model in fracture mechanics.

Introducing a complex-valued stress intensity factor

(13)K = −√
2π lim

x→a
(a − x)r

[
P(x) + iQ(x)

]
,

which by Eq. (10) leads to

K = E∗(2a)−r̄

√
2π(1 − β2)R

a∫
−a

t (a + t)r̄ (a − t)r

a − t
dt

(14)+
√

2(2a)−r̄ (iF cos θ + F sin θ)√
π

.

Substituting Eq. (14) into the dynamic Griffith energy balance
criterion

(15)G = 1

cosh2 πκ

|K|2
2E∗ = �γ,

yields the final controlling equations
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∣∣∣∣∣ 1

2(1 − β2)

(
a

R

)3/2 1∫
−1

ξ(1 + ξ)r̄ (1 − ξ)r

1 − ξ
dξ

(16)

+
(

F sin θ

E∗R
+ iF cos θ

E∗R

)(
R

a

)1/2
∣∣∣∣∣
2

= 2π�γ cosh2(πκ)

E∗R
,

which denotes the relations among the contact half width a,
the pulling force F and the pulling angle θ ; �γ is the work of
adhesion of the contact interface, �γ = γ1 + γ2 − 2γ12, where
γ1, γ2 are the intrinsic surface energies of the two solids and
γ12 is the surface energy of the contact interface.

From Eqs. (13)–(16), one can see that the concepts of
complex-valued stress intensity factor and the Griffith energy
criterion in fracture mechanics are used to describe the adhe-
sive contact pull-off process. As the energy release rate exceeds
the work of adhesion of the contact interface, debonding will
happen.

4. Nonoscillatory solution to the bimaterial contact model

Motivated by recent studies on an elastic cylinder adhering
with a stretched substrate [35,36] and two adhering spheres sub-
jected to combining actions of a pair of forces and a mismatch
strain [37], in which it is found that the effects of Dundurs’
parameter on the contact area and pull-off process are very
small and can be neglected, a nonoscillatory solution can be
a very good approximation to the bimaterial adhesive contact
model, we present the corresponding nonoscillatory solution to
the present model in this section.

Due to the elastic mismatch, oscillatory index κ is intro-
duced in Section 3, which is only related with Dundurs’ para-
meter β . The nonoscillatory case corresponds to β = 0, which
yields

(17)r = 1

2
, κ = 0,

then, using a similar method in [35] or substituting Eq. (17) into
Eq. (10), the tangential and normal tractions of the nonoscilla-
tory case in the contact region can be written as

(18)P(x) = −E∗

2R

x2 − a2/2√
a2 − x2

− F sin θ

π
√

a2 − x2
,

(19)Q(x) = −F cos θ

π
√

a2 − x2
,

which results in the uncoupled stress intensity factors as

(20)

KI = −√
2π lim

x→a
(a − x)1/2P(x)

= E∗√πa3/2

4R
+ F sin θ√

πa
,

(21)KII = −√
2π lim

x→a
(a − x)1/2Q(x) = F cos θ√

πa
.

Substituting Eqs. (20) and (21) into the Griffith energy bal-
ance criterion for the nonoscillatory case

(22)
(K2

I + K2
II)

∗ = �γ

2E
yields

(23)
F 2

πa
+ F sin θE∗a

2R
+ E∗2πa3

16R2
− 2E∗�γ = 0,

to determine the contact half width a as a function of the exter-
nal pulling force F and the pulling angle θ .

The explicit solution of Eq. (23) can be written as

(24)F = −πE∗a2 sin θ

4R
+

√
2πE∗�γa − π2E∗2a4 cos2 θ

16R2
.

In order to obtain the pull-off force, we take

(25)
∂F

∂a
= 0,

which yields the pull-off contact half width ap as

(26)
ap

R
=

(
8�γ [1 + sin2 θ −

√
(1 + sin2 θ)2 − cos2 θ ]

πE∗R cos2 θ

)1/3

.

Inserting the pull-off contact half width ap in Eq. (26) into Eq.
(24) leads to the pull-off force Fp in a direction of θ ,

(27)
Fp

�γ
= −πE∗a2

p sin θ

4�γR
+

√
2πE∗ap

�γ
− π2E∗2a4

p cos2 θ

16R2�γ 2
.

As a special case, θ = π/2, the relation between the pulling
force and the contact half width becomes

(28)F = −πE∗a2

4R
+ √

2πE∗a�γ ,

the pull-off contact half width in this case is

(29)
ap

R
=

(
2�γ

πE∗R

)1/3

and the pull-off force is

(30)
Fp

�γ
= −πE∗a2

p

4R�γ
+

√
2πE∗ap

�γ

which are identical to the plane strain classical JKR theory [8].
Using the pull-off force of JKR theory, Fp JKR, in Eq. (30), to

normalize that of nonoscillatory solution to the present model
yields

(31)
Fp

Fp JKR
= −4

3

(
ω

2

)2/3

sin θ + 24/3

3

√
4ω1/3 − ω4/3 cos2 θ,

where

(32)ω = 1 + sin2 θ −
√

(1 + sin2 θ)2 − cos2 θ

cos2 θ
.

The corresponding normalized pull-off contact half width is

(33)
ap

ap JKR
=

(
4[1 + sin2 θ −

√
(1 + sin2 θ)2 − cos2 θ ]
cos2 θ

)1/3

,

ap JKR is identical to ap in Eq. (29).
From Eqs. (31) and (33), one can see that the normalized

pull-off force ad pull-off contact half width are only dependent
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on the pulling angle θ and have no relations with the pulling
force and the materials’ constants.

If we define the adhesive strength as

(34)σ = Fp

2ap

then, the normalized adhesive strength can be expressed as

(35)
σ

σJKR
= Fp

Fp JKR

ap JKR

ap
,

where σJKR is the adhesive strength in the classical JKR theory.

5. Discussions

5.1. The effects of Dundurs’ parameter β

As mentioned above, we have recently studied three kinds
of generalized cases with perfect bonding [35–37]: (1) gener-
alized JKR model of an elastic cylinder adhesively contacting
with an elastic stretched substrate [35]; (2) generalized Maugis–
Dugdale model of an elastic cylinder adhesively contacting with
an elastic stretched substrate [36]; (3) generalized JKR model
with perfectly adhesive bonding between two dissimilar elas-
tic spheres [37]. In all these three cases, it has been found that
the effects of Dundurs’ parameter β on the contact half width
(contact radius) and the pull-off process are negligible and a
nonoscillatory solution can be a good approximation to the gen-
eralized solution for each model. In all these three cases, the
external pulling force F vanishes or the pulling direction is nor-
mal to the contact interface, which is the main difference from
the present model.

In this section, the effects of Dundurs’ parameter β will also
be discussed with consideration of different pulling angle in the
present model.

According to Eq. (16), Fig. 2 denotes the pulling force F

normalized by that of nonoscillatory solution (β = 0) at the
normalized contact half width a/R = 0.1 versus different Dun-
durs’ parameter β , in which two values of �γ/E∗R are taken
as 0.001 and 0.01, respectively, and three representative pulling

Fig. 2. Plots of normalized pulling force F/Fβ=0 versus Dundurs’ parameter
β with the normalized contact half width a/R = 0.1, parameters �γ/E∗R =
0.001, 0.01 and the pulling angles θ = 0, π/6, π/2, to check the effects of β .
angles are investigated, θ = 0, π/6, π/2. The region of β is
taken from −0.25 to 0.25, the admissible values for most mate-
rials. From Fig. 2, one can see that the difference between the
oscillatory solution and nonoscillatory one is influenced by the
nondimensional parameter �γ/E∗R and the pulling angle θ .
The smaller the pulling angle θ and nondimensional parameter
�γ/E∗R, the larger difference it has.

Fig. 3 gives the relation between the normalized pulling
force F/Fβ=0 at the normalized contact half width a/R = 0.05
and the Dundurs’ parameter β . The other parameters are taken
the same as those in Fig. 2. Comparing Figs. 2 and 3, one can
see that for a fixed bimaterial pair and a fixed pulling angle, the
smaller that contact width, the smaller the difference between
the oscillatory and nonoscillatory solutions is.

In Fig. 4, normalized pulling force F/Fβ=0 at the normal-
ized contact half width a/R = 0.1 via the pulling angle θ for
two different nondimensional parameters �γ/E∗R is given, in
which three typical values of Dundurs’ parameter β are cho-
sen, i.e., β = −0.25, 0, 0.25. From Fig. 4, one can see that
effects of Dundurs’ parameter decrease when the nondimen-

Fig. 3. Plots of normalized pulling force F/Fβ=0 versus Dundurs’ parameter
β with the normalized contact half width a/R = 0.05, parameters �γ/E∗R =
0.001, 0.01 and the pulling angles θ = 0, π/6, π/2, to check the effects of β .

Fig. 4. Curves of normalized pulling force F/Fβ=0 versus pulling angle θ with
the normalized contact half width a/R = 0.1, parameters �γ/E∗R = 0.001,
0.01 and three typical Dundurs parameters β = −0.25, 0, 0.25 to check the
difference between the general solution and the nonoscillatory one.
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sional parameter �γ/E∗R increases. The maximum influence
of Dundurs’ parameter on the pull-off process happens in the
case with pulling angle θ = 0.

Considering a different normalized contact half width, for
example, a/R = 0.05, and the other parameters are taken the
same as those used in Fig. 4, the relations between the nor-
malized pulling force F/Fβ=0 and pulling angle θ are shown
in Fig. 5. Comparing Figs. 4 and 5, we can find that the ef-
fects of Dundurs’ parameter on the pull-off process decreases
as the contact half width decreases. As the value of nondimen-
sional parameter �γ/E∗R is larger than 0.001, the effects of
Dundurs’ parameter in any case is negligible. The difference
between the oscillatory solution and the nonoscillatory one is
less than 7%.

In a whole, the effects of Dundurs’ parameter is not signifi-
cant for larger pulling angle, smaller contact half width or larger
nondimensional parameter �γ/E∗R. Under these conditions,
the nonoscillatory solution can generally be a good approxima-
tion for the model of an elastic cylinder adhesively contacting
with an elastic half space with a pulling force on the cylinder in
an arbitrary direction.

Fig. 5. Curves of normalized pulling force F/Fβ=0 versus pulling angle θ with
the normalized contact half width a/R = 0.05, parameters �γ/E∗R = 0.001,
0.01 and three typical Dundurs parameters β = −0.25, 0, 0.25 to check the
difference between the general solution and the nonoscillatory one.

Fig. 6. The effects of pulling angle θ on the pull-off force Fp, where Fp JKR
is the pull-off force in the classical JKR theory. The maximum pull-off force
emerges at θ = 0.
5.2. The effects of the pulling angle on the pull-off process

In order to get some understanding on how the pulling an-
gle influencing the pull-off force and pull-off contact half width
in the approximate solutions, Eqs. (31), (33), and (35) are ana-
lyzed numerically here. Fig. 6 denotes the normalized pull-off
force Fp/Fp JKR versus the pulling angle θ . From Eqs. (31) and
(32), we know that for the nonoscillatory solution, the normal-
ized term Fp/Fp JKR has no relation with the material constants
and pulling force, only depends on the pulling angle θ . It shows
that the pull-off force decreases when the pulling angle in-
creases and attains the maximum value at θ = 0.

Fig. 7 gives a curve of the relation between the normalized
pull-off contact half width ap/ap JKR and the pulling angle θ ,
which shows that the pull-off contact half width decreases as the
pulling angle increases and attains a maximum value at θ = 0.
In Fig. 8, the adhesive strength σ/σJKR versus the pulling angle
θ is plotted according to Eq. (35). From Fig. 8, one can see that
the adhesive strength increases as the pulling angle increases
and obtains a maximum value at θ = π/2.

From the above discussion, one should note that the nonoscil-
latory solution give a good approximation to the bimaterial

Fig. 7. The effects of pulling angle θ on the pull-off contact half width ap,
where ap JKR is the pull-off contact half width in the classical JKR theory. The
maximum pull-off contact half width is at θ = 0.

Fig. 8. The effects of pulling angle θ on the adhesive strength σ , where σJKR
is the adhesive strength in the classical JKR theory. The maximum adhesive
strength is at θ = π/2.
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Fig. 9. Scheme of a micro-pipette to measure the adhesive force of a cell cul-
tured on a substrate.

model under some conditions. Otherwise, the exact oscillatory
one should be used for analysis or applications. As a special
case of the present model, θ = π/2 [35–37] have demonstrated
that nonoscillatory solution is a good approximation, which can
also be found in the present model.

Solutions to the contact model between orthotropic or
anisotropic bodies will be investigated in the future studies as
well as viscoelasticity features.

As we know that [24] has used the classical JKR mode to
successfully predict the adhesion energy between two S180
cells. The present model is promising to predict the adhesive
force between cells and substrates using micro-pipette aspira-
tion as schemed in Fig. 9, which is also a usual way used in the
bio-experiments.
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