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  Abstract   For simulat ing mult-i scale complex f low fields like turbulent f low s, the high order accurate schemes are preferred. In

this paper, a scheme const ruction w ith numerical flux residual correct ion ( NFRC) is presented. Any order accurate dif ference approxima-

t ion can be obtained w ith the NFRC. To improve the resolut ion of the shock, th e const ructed schemes are modified w ith group velocity

cont rol ( GVC) and w eighted group velocity cont rol ( WGVC) . T he method of schem e construct ion is simple, and it is used to solve pract-i

cal problems.

  Keywords:  high order accurate scheme, group velocity control, high resolution of the shock.

  T o simulate the mult-i scale complex f low fields,

like turbulence, high order accurate schemes are pre-

ferred. There are many w ays to construct high order

accurate schemes[ 1, 2] , but most of them are compl-i

cated, and a system of linear algebraic equations has

to be solved. In 1992, w e const ructed the fourth or-

der symmetrical compact difference approximat ion by

using residual correct ion f rom low er order difference

approx imat ion[ 3] . In 2001 and 2002, Lerat and

Corre const ructed a t radit ional fourth order accurate

approx imat ion w ith residual correct ion f rom the sec-

ond order accurate dif ference approximation[ 4, 5] .

T hese scheme constructions are simple, but the

schemes w ere constructed only for the particular cas-

es. In this paper w e present a simple method for con-

st ruct ion of the high order accurate schemes using nu-

merical f lux residual correct ion, and the scheme con-

st ruct ion w ith numerical flux residual correction for

more general cases is presented.

When high order accurate schemes are used to

solve problems w ith discont inuit ies, the oscillations

w ill be produced in the numerical solutions. To im-

prove the resolut ion of the shock, many good schemes

w ith high resolution of the shocks have to be deve-l

oped, and many pract ical problems have been solved

w ith these schemes[ 6) 12] . As is known, the total

v ariat ion diminishing ( T VD) scheme can capture the

shocks well[ 6] , but the accuracy of the schemes is too

low to simulate the complex f low s w ith a w ide range

of scales. The dissipation of the scheme is large, and

the accuracy of the schemes will be reduced at the ex-

treme points. Essentially non-oscillatory ( ENO) and

w eighted essent ially non-oscillatory ( WENO )

schemes have high order accuracy, but they are com-

plicated and computer t ime consuming[ 7) 10] . WENO

scheme w as greatly improved in Refs. [ 9 ) 11] . In

Ref. [ 12] , the behavior of the numerical solut ions is

analyzed and GVC is used to improve the resolut ion of

discont inuit ies.

In this paper, a class of schemes const ructed

w ith NFRC is presented. T o improve the resolut ion

of the shock, the const ructed schemes are modified

w ith GVC and WGVC.

1  Numerical flux residual correction ( NFRC)

Consider a model equat ion and its sem-i discrete

approximat ion

9u
9t

+
9f
9x

= 0,  f = cu,  c = const, (1)

9u j

9t
+

F j

$x
= 0. (2)

Define

$x
9f
9x j

= Fj ,  F j = hj+ 1/ 2- hj- 1/ 2,

where hj + 1/ 2 is the numerical flux. For the f irst order



upw ind difference approx imat ion we have

F
(1,+ )
j = h

( 1, + )
j+ 1/ 2- h

( 1, + )
j - 1/ 2,  h

(1,+ )
j+ 1/ 2 = f j , ( 3)

where the upper index ( k , + ) ( in Eq. ( 3) k = 1)

denotes that the approx imat ion is k th order accurate

for c > 0. Af ter Taylor series expansion from ( 3) ,

w e have

h
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( 4)

from which w e can obtain the second order symmetr-i

cal difference approx imat ion using a discret izat ion of

the residual term on the right hand side of Eq. ( 4) :

F
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( 5)

where

h
( 2, 0)
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(1,+ )
j+ 1/ 2 +

1
2
D
+
xf j =

1
2
( f j + f j+ 1) , ( 6)
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+
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( 7)

and the upper index ( k , 0) means that the approx-i

mat ion is symmetrical and k th order accurate. From

Eq. ( 4) w e can also construct the second order accu-

rate upw ind biased dif ference approximation. For ex-

ample, for the case c> 0,

F
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After Taylor series expansion from the second order accu-

rate symmetrical difference approximation, we have

F
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1
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from which we can get the numerical flux w ith the

third order upw ind difference approx imat ion:

h
( 3, + )
j+ 1/ 2= h

( 2, 0)
j+ 1/ 2-

1
6
D
2
xf j

=
1
6
[ 2f j + 5f j+ 1- f j- 2] , ( 9)

and the fourth order accurate symmetrical difference

approx imat ion:

h
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1
12

[ D
2
xf j+ 1 + D

2
xf j ]

=
1
12[- f j+ 2 + 7( f j+ 1 + f j ) - f j- 1] .(10)

From the flux residual correction w e can construct the

higher order accurate approximat ions. For example,

the f if th order upw ind difference approx imat ion

h
(5,+ )
j+ 1/ 2 = h

( 4, 0)
j + 1/ 2+

1
30
D
4
xf j , (11)

D
4
xf j = f j+ 2 + f j- 2- 4( f j+ 1 + f j- 1) + 6f j ,

h
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j+ 1/ 2 =

1
60

[- 3f j+ 2 + 27f j+ 1+ 47f j

- 13f j- 1+ 2f j- 2] ; (12)

the sixth order symmetrical dif ference approximat ion

h
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1
60

( D
4
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h
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1
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the seventh order accurate upw ind difference approx-i

mat ion
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1
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D
6
xf j , (14)

D
6
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+ 15( f j+ 1 + f j- 1) - 20f j ;

the eighth order accurate symmetrical difference ap-

proximat ion
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1
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( D
6
xf j + D

6
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the ninth order accurate upw ind dif ference approx-i

mat ion

h
( 9, + )
j+ 1/ 2 = h

(8, 0)
j+ 1/ 2+

576
9!

D
8
xf j ;

and the tenth order accurate symmetrical dif ference

approximat ion

h
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(8, 0)
j+ 1/ 2 +

288
9!

( D
8
xf j + D

8
xf j + 1) .

In the general case, suppose that at g rid points j- k,

,, j - 1, j , j + 1, ,, j + k, we have the 2k order

accurate symmetrical difference approx imat ion

F
( 2k, 0)
j = h

( 2k, 0)
j+ 1/ 2 - h

( 2k , 0)
j- 1/ 2 ,

f rom which after Taylor series expansion w e can ob-

tain

h
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j+ 1/ 2 - h

( 2k , 0)
j- 1/ 2

  = $x 9f
9x j

+ C$x
2 k+ 1 9

2k+ 1
f

9x
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9x j

+ C$x
2 k 92k

f

9x
2k

j+ 1/ 2

   - C$x
2k 92 k

f

9x
2k

j- 1/ 2
+ O ($x

2k+ 2
) , (15)

where C is a known constant obtained af ter T aylor

series expansion. With grid points j - k - 1, ,, j ,

,, j + k+ 1 after discret izat ion of the terms in [  ]
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we can get the expression

$x
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2k
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where
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1
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2kf j - k+ m + ,+ (- 1)
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T he 2( k+ 1) th order accurate symmetrical numerical

flux can be written as

h
( 2k+ 2, 0)
j + 1/ 2 = h

(2k , 0)
j+ 1/ 2 -

C
2
[ D

2k
x f j + D

2k
x f j+ 1] . (18)

If the approx imat ion $x
2k

[ 9
2k

f / 9x
2k

] j + 1/ 2 =

D
2k
x f j - m is used, the follow ing ( 2k+ 1) th order accu-

rate upw ind biased numerical f lux can be obtained:

h
( 2k+ 1, + )
j+ 1/ 2 = h

(2k , 0)
j+ 1/ 2 - CD

2k
x f j+ m , (19)

where m [ 0 for the case C> 0. The simplest case is

m= 0.

2  Operator extrapolation

In Ref . [ 12] it is show n that the oscillat ions are

created by the non-uniform group velocity in the nu-

merical solut ions. The symmetrical and the w eakly

upw ind biased schemes belong to the class SLOW

( denoted as SLW in Ref . [ 12] ) , and the st rong ly up-

w ind biased schemes belong to the class MEXED ( de-

noted as MXD in Ref . [ 12 ] ) . The second Pade

scheme belongs to class FAST ( denoted as FST in

Ref . [ 12] ) . T o improve the shock resolution it is

suggested to use FST / MXD scheme behind the

shock, and SLW scheme in front of the shock. Sup-

pose that w e have uniformly distributed mesh grid

points j - k , ,, j - 1, j , j+ 1, ,, j + k on which w e

can const ruct 2k order symmetrical difference approx-

imation for the f irst derivative, and ( 2k- 1) th order

upw ind biased difference approx imat ion ( m = 0 ) .

T he correspondingly modified wave numbers are

K e
(2k , 0)

= K r
( 2k , 0)

+ iK i
( 2k , 0)

and K e
(2k- 1, 0)

=

K r
(2k- 1, 0)

+ iK i
( 2k- 1, 0)

, where K r is related with

the dissipation of the scheme, and K i is related with

the dispersion. For symmetrical approximation w e

have K r
( 2k , 0)

= 0. Af ter eliminating the term h
(2k , 0)
j + 1/ 2

from Eqs. ( 19) and ( 18) , the follow ing relat ion ( for

the case of m= 0) can be obtained

h
(2k+ 1,+ )
j+ 1/ 2 = h

( 2k+ 2, 0)
j+ 1/ 2 +

C
2 [ D

2k
x f j + 1- D
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from which w e can obtain

F
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(2k+ 2, 0)
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+
C
2
[ D
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2k
x f j + D

2k
x f j- 1] . (20)

The term in the f irst brace of the right hand side of

Eq. ( 20) is related only w ith the dispersion, and the

term in the second brace is related only w ith the diss-i

pation. From Eq. ( 20) it can be seen that K i
( 2k , 0)

=

K i
(2k- 1, 0)

. In this paper, the difference approxima-

t ion F
( 2k , 0)
j on j - k , ,, j - 1, j , j + 1, ,, j + k,

and F
(2k+ 1, + )
j on j - k- 1, ,, j - 1, j , j+ 1, ,, j +

k are used as the orig inal schemes to construct the

scheme w ith the group velocity control. In this case

w e have K i
(2k+ 1, + )

> K i
( 2k, 0)

or D
( 2k+ 1, + )

( K i) >

D
( 2k, 0)

( K i ) for the most commonly used schemes,

w here D ( K i ) is the group velocity of the numerical

solution[ 12] defined by d[ K i ( A) ] / dA. Although we

have D
(2k+ 1, + )

( K i ) > D
( 2k, 0)

( K i ) , the scheme

F
( 2k+ 1, + )
j may not be MXD. To make the scheme

MXD, a dif ference operator ext rapolat ion is int ro-

duced.

Consider a linear combinat ion

�h
( 2k- 1, ? )
j + 1/ 2 = (1+ R) h

(2k- 1, ? )
j+ 1/ 2 - Rh

( 2k, 0)
j + 1/ 2 , (21)

�h
(2k , ? )
j+ 1/ 2 = (1 + R) h

( 2k+ 1, ? )
j+ 1/ 2 - Rh

(2k , 0)
j+ 1/ 2 , (22)

where the scheme is symmetrical and SLW for R=
- 1, and it is dissipat ive for R> - 1. The scheme

w ith numerical flux ( 21) has the order of accuracy of

O[ (1+ R) h
2k- 1

, h
2k
] , and the scheme w ith ( 22)

has the order of accuracy of O( h
2k
) . F rom the above

analysis w e can see that the linear combinat ion ( 22)

can increase both the dissipat ion and the g roup veloc-i

ty with the increasing parameter R> - 1, but the lin-

ear combinat ion ( 21) can only increase the dissipat ion

of the scheme with any R> - 1, and the group veloc-

ity of the numerical solutions cannot be changed. In

this paper Eq. ( 22 ) is used to const ruct GVC

schemes. The linear operator ext rapolation ( 22) leads

to enlarged group velocity and the dissipation in the

numerical solut ions and make the scheme MXD w ith

R> - 1 w ithout losing the order of accuracy.

3  Improvement of shock resolution with

GVC

3. 1  Scheme w ith GVC

Ref. [ 12] has shown that to improve the shock

resolut ion it is suggested to use SLW scheme in front

of the shock, and FST/ MXD scheme behind the

shock. Fig. 1 and Fig. 2 g ive the variations of the
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g roup velocity D( K i ) / DAand K r as a function A=
k $x for the case of k = 2( fourth order accurate) in

scheme w ith ( 22) , and Fig . 3 and Fig. 4 show the

variat ions of D( K i ) / DAand K r for the case of k= 3

( six th order accurate) .

Fig. 1.  Variat ion of D ( K i) / DA versus A( k= 2) .

Fig. 2.  Variation of K r versus A( k= 2) .

Fig. 3.  Variation of D( K i ) / D( A) versus A( k= 3) .

It can be seen from Figs. 1 ) 4 that the scheme

is dissipat ive ( R> - 1) and MXD for large R. The

numerical f lux of the 2kth order schemes af ter mod-i

f icat ion w ith GVC is expressed as

Fig. 4.  Variat ion of K r versus A( k = 3) .

F
(2k )
j = H

( 2k )
j+ 1/ 2- H

( 2k )
j- 1/ 2,

H
(2k )
j+ 1/ 2 = H

(2k ,+ )
j+ 1/ 2 + H

( 2k ,- )
j+ 1/ 2 ,

H
( 2k , ? )
j+ 1/ 2 =

1 ? SS ( j + 1/ 2)
2

�h
(2 k, ? )
j+ 1/ 2

+
1 ºSS ( j + 1/ 2)

2 h
( 2k , 0)
j+ 1/ 2 , (23)

where �h
( 2k , ? )
j + 1/ 2 is obtained from ( 22) and the corre-

sponding scheme is MXD after operator ext rapola-

t ion. In computat ion, the SS function is expressed

as[ 12]

SS ( f j+ 1/ 2) =
1
2
[ SS ( f j+ 1) + SS ( f j ) ] , (24)

SS ( f j ) = sign( D
0
xf j # D2xf j ) . (25)

For the aerodynamics equat ions the density Qor the

pressure p can be used as the funct ion f in ( 25) . Ex-

pression ( 23) makes the scheme MXD behind the

shock and SLW in front of the shock, and therefore

the GVC requirement is satisfied for improvement of

the shock resolut ion.

3. 2  Weighted g roup velocity control ( WGVC)

The above presented NFRC+ GVC method is

st ill diff icult to solve the discont inuity with high pres-

sure rat io for the high order scheme ( higher than sec-

ond order accuracy: k > 1) . In this sect ion the so-

called WGVC method is introduced. Pract ical appl-i

cation shows that good resolution of the shock can be

obtained w ith the following modif ied GVC scheme

H
( 2k , ? )
j+ 1/ 2 =

1 ? SS ( j + 1/ 2)
2

�h
(2 k, ? )
j+ 1/ 2

+
1 ºSS ( j + 1/ 2)

2
�h
( 2k , 0)
j+ 1/ 2 , (26)

�h
( 2k, ? )
j + 1/ 2 = (1 - g

( 2k )
j+ 1/ 2)�h

( 2k, ? )
j + 1/ 2 + g

( 2k)
j+ 1/ 2�h

(2, ? )
j+ 1/ 2

�h
( 2k, 0)
j + 1/ 2 = (1 - g

(2k )
j+ 1/ 2) h

( 2k , 0)
j+ 1/ 2 + g

(2k )
j+ 1/ 2h

( 2, 0)
j+ 1/ 2

,

(27)
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g
( 2k )
j+ 1/ 2 = [ R0, j + 1/ 2]

2k
. (28)

T he function R0, j + 1/ 2is defined in our computat ion as

R0, j+ 1/ 2 =
| D

+
xf j |

max
j

| D
+
xf j | + E

, (29)

R0, j+ 1/ 2 =
| f j+ 1 - f j |

| f j+ 1 |+ | f j | + E
, (30)

where EW10- 5 is a small parameter. From the def-i

nit ion ( 28, 29 ) it can be seen that g
( 2k)
j + 1/ 2 U

[ O( R0$x ) ]
2k

and the const ructed scheme has 2k or-

der accuracy in the smooth region. With large param-

eter R in Eq. ( 22) we can enlarge the wave interval

w here the scheme has FST property and increase the

dissipation in the uncontrollable w ave interval w ithout

losing the order of accuracy. R= 3 is used in our com-

putat ion. T he process of scheme construction is as

follows: 1) const ruct the high order accurate NFRC

schemes; 2) make the upwind biased scheme MXD

w ith operator ex trapolation; 3) modify the scheme

w ith w eight ing ; 4) control the group velocity of nu-

merical solut ion for having shock w ith high resolu-

t ion.

4  Numerical experiments

T he above presented method w as used to solve

pract ical problems, for example, the propagation of

the linear shock, the steady state shock tube prob-

lem , the Sod model problem, the 2-D Riemman prob-

lem, and the shock-material surface interaction prob-

lem . From the view point of inviscid flow , the thick-

ness of the shock is zero, the derivat ive does not exist

at the shock, and therefore the high order accurate

scheme does not help much for shock capturing . Our

purpose of const ruct ing the high order accurate

scheme is to simulate the complex flow field w ith the

N-S equations. T he numerical ex amples are g iven in

this sect ion just to show the capability of shock cap-

turing w ith the developed schemes. Eq. ( 30) is used

in computat ion.

4. 1  1-D steady state shock tube problem

T he one-dimensional Euler equat ions are dis-

cret ized w ith both the fourth and six th order accurate

NFRC+ WGVC schemes for the cases of M ] = 2, 5,

and 10. Fig. 5 show s the pressure distribut ion for the

case of M ] = 10 w ith the fourth order accurate

NFRC+ WGVC, and Fig. 6 presents the pressure

dist ribut ion for the sixth order accurate NFRC +

WGVC scheme.

Fig. 5.  Pressure w ith the 4th order NFRC+ WGVC.

Fig. 6.  Pressure w ith the 6th order NFRC+ WGVC.

4. 2  1-D Sod model problem[ 13]

The distribut ions of the fluid parameters at the

beginning t = 0 are as follow s

p = 1, Q= 1, u = 0;

p = 0. 1, Q= 0. 125, u = 0.

Figs. 7 and 8 give the pressure and density dist ribu-

t ions w ith the 4th order accurate NFRC+ WGVC at

t = 0. 14. Figs. 9 and 10 show the pressure and den-

sity distribut ions w ith the 6th order accurate NFRC

+ WGVC. The exact solut ions are also given for

comparison.

Fig. 7.  Pressure w ith the 4th order NFRC+ WGVC.
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Fig. 8.  Density w ith the 4th order NFRC+ WGVC.

Fig. 9.  Pressure with the 6th order NFRC+ WGVC.

Fig. 10.  Density w ith the 6th order NFRC+ WGVC.

4. 3  1-D Shu-Osher shock tube problem

T he init ial data are g iven as follows:

Q= 3. 857, u = 2. 629, p = 10. 33,

for 0 [ x < 0. 1,

Q= 1 + asin( x ) , u = 0. 0, p = 1. 0,

for 0. 1 [ x [ 1. 0.

In computat ion a= 0. 3 and = 40 are used. F ig. 11

gives the result w ith the fourth order accurate NFRC

+ GVC at t = 0. 2 w ith number of mesh grid points

N = 401. Fig. 11 also g ives a result w ith number of

grid points N = 5001 which is considered to be the

exact solut ion. T he ag reement is quite w ell. Fig. 12

presents the result w ith the 6th order NFRC+ GVC

w ith the same mesh grid points. In computation the

parameter R0, j +
1
2

= 0 ( w ithout weight ing ) in

Eq. ( 29) is used.

Fig. 11.  Pressure w ith the 4th order NFRC+ GVC at t = 0. 2.

Fig. 12.  Pressure w ith the 6th order NFRC+ GVC at t = 0. 2.

4. 4  2-D Riemman problem
[ 13]

The init ial dist ribut ion of the physical parame-

ters is as follow s:

Q1= 1. 5,   p 1= 1. 5,  u1= 0. 0,  v 1= 0. 0;

Q2= 0. 5323, p 2= 0. 3, u2= 1. 206, v 2= 0. 0;

Q3= 0. 1379, p 3= 0. 029, u3= 1. 206, v 3= 1. 206;

Q4= 0. 5323, p 4= 0. 3, u4= 0. 0, v 4= 1. 206;

The index k of the fluid parameter gk shows that gk

is dist ributed in the subdomain w ith index k ( F ig.
13) . This problem w as computed w ith the 4th order

and 6th order NFRC+ WGVC. The density contours
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computed w ith the 6th order NFRC+ WGVC at t =

0. 6 are given in Fig. 14, and the pressure contours

are given in Fig . 15.

Fig. 13.  S chematic diagram for dist ribution of fluid param eters at

t = 0.

Fig. 14.  Density contours of 2-D Riemman problem at t= 0. 6.

Fig. 15.  Pressure contours of Riemman problem at t = 0. 6.

4. 5  Numerical simulat ion of R-M instability prob-

lem

T he R-M instability is the instability of acceler-

ated material interface driven by moving shock be-

tw een tw o dif ferent media. The R-M instability has

att racted at tent ion of many researchers recent ly be-

cause of the importance of this kind of problems in in-

ert ial confinement fusion ( ICF) and explosion of su-

pernova. As an example, this problem is solved w ith

the scheme developed in this paper. The sixth order

accurate WGVC method is used to approximate the

convect ion terms of the two-dimensional compressible

N-S equations in cylindrical coordinate, and the vis-

cous terms of the N-S equat ions are approximated

w ith the t radit ional six th order accurate dif ference ap-

proximat ion.

At t = 0 w e have a shock as shown in Fig . 16

( a) . The shock is moving tow ard to the center w ith

shock M ach number M s= 1. 2. T he Reynolds num-

ber is Re= 50000 based on the radius of the averaged

material interface at t = 0. 0. The light gas is inside

the interface. The initial condit ions are given in Ref.

[ 14] . The moving shock w ill interact w ith the mate-

rial interface. Some results are show n in Fig. 16,

f rom which w e see the development of R-M instabil-i

ty. After shock- interface interact ion, the reflected

rarefact ion w ave goes outw ard, and the transmitted

shock goes tow ard the center. After mult iple interac-

t ion of the waves betw een the material interface and

the center w e obtain the typical spike-bubble struc-

ture ( F ig. 16 ( c) ) . We can see the phase changing

clearly f rom Fig. 16( a) ) ( c) . F ig . 16( d) g ives the

w ave structure show ing the interaction betw een the

t ransm it ted shocks at the t ime t= 0. 39.

5  Summary

( i) A new method of high order accurate differ-

ence approx imat ion w ith NFRC is presented. T he

method is simple, and the scheme w ith any order of

accuracy can be obtained easily.

( ii) A simple linear operator ext rapolation is in-

troduced to control the dissipat ion and dispersion of

the scheme.

( iii) The const ructed NFRC scheme is modified

w ith group velocity control ( GVC) and w eighted

group velocity control ( WGVC) to improve the reso-

lution of the shock.

( iv) T he const ructed NFRC+ GVC ( or NFRC

+ WGVC) scheme is used to solve physical problems,

and the obtained results are satisfactory.
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Fig. 16.  Com puted result s at diff erent t imes: ( a) Density contours at t= 0. 00; ( b) density contours at t = 0. 30; ( c) density contours

at t = 3. 3; ( d) pressure contours at t= 0. 39.
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