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Abstract. An investigation into the three-dimensional propagation of the transmitted shock wave in a
square cross-section chamber was described in this paper, and the work was carried out numerically by
solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed
from the density distribution of the transmitted shock wave discharging from the open end of the square
shock tube and compared directly with holographic interferograms available for CFD validation. Two
cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were
simulated. A special shock reflection system near the corner of the square cross-section chamber was
observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a
Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave
becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in
the present case due to the non-uniform flow expansion behind the transmitted shock.
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PACS: 43.40.Nm

1 Introduction

Shock wave propagation in two-dimensional cases has
been well investigated in the last several decades be-
cause of its important applications, particularly for exam-
ple, shock wave reflections over wedges (Hornung 1986,
Ben-Dor 1992), shock wave diffractions around sharp cor-
ners (Skews 1967, Takayama and Inoue 1991) and shock
wave focusing in specially-designed reflectors (Terao 1984,
Grönig 1989). The pioneer research led to good under-
standing on two-dimensional shock wave propagation and
reflection, but little work has been reported so far on the
propagation of three-dimensional shock waves, which is of
more importance in engineering. This is because three-
dimensional shock wave phenomena are somewhat diffi-
cult to visualize clearly by using flow visualization tech-
niques. Moreover, the visualized images of the shock waves
are very complicated and difficult to interpret due to the
three-dimensional effects occurring in flow visualization
process.

As is well known, with development of high resolution
shock-capturing schemes in the research area of Computa-
tional Fluid Dynamics (CFD), numerical simulations be-
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come a quite powerful tool to highlight flow physics in
three-dimensional complex flowfields. However, numerical
solutions must be validated before the results are con-
vinced to describe the physics correctly because the gov-
erning equations, initial and boundary conditions used are
only approximations, to a certain extent, of the conserva-
tion laws of fluid flows. This leads to another problem,
that is, the validation of numerical simulations with ex-
periments. Such validation for shock wave research re-
quires the comparison of the numerical solutions of the
entire flowfield with experimental data measured by non-
intrusive techniques at the same instant. The topic is
still a challenging problem in CFD because the three-
dimensional flowfields, often including shock wave reflec-
tion, diffraction and interaction, are always highly tran-
sient. On the other hand, the experimental data from flow
visualization also need to be reliably confirmed and care-
fully interpreted with the help of numerical simulations
because of the complex nature of the three-dimensional
flows.

One of the three-dimensional shock waves possibly cre-
ated in the laboratory with shock tubes is the shock wave
diffracting at the open-end of a square cross-section tube.
The transmitted shock wave, at its initial stage, is pla-
nar, but quickly deforms into a three-dimensional con-
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Fig. 1. Computational domain for numerical simulation of
three-dimensional shock wave propagation

figuration as it propagates. This shock wave was inves-
tigated earlier by Abe and Takayama (1989) and then by
Watanabe and Takayama (1992) using double exposure
holographic interferometry. In their work, the shock wave
propagating at a Mach number of Ms = 1.5 in air was
visualized from the direction normal to that of the shock
wave propagation. The transmitted shock wave and the
primary vortex loop behind it were clearly observed from
their experiments. Further understanding came from the
work reported by Jiang et al. (1999). The motion of the
transmitted shock wave and the primary vortex loop be-
hind it were well demonstrated with the combination of
numerical and experimental results. Investigation into the
three-dimensional shock reflection was reported by Me-
guro et al. (1997). In their study, a planar shock wave
propagates from a square cross-section shock tube into a
converging chamber with a special corner consisting of two
wedges. The results obtained were compared with the an-
alytic data of two-dimensional shock wave reflection, and
some similar characteristics were reported. A special test
case for investigating three-dimensional shock wave prop-
agation is proposed in this paper. It is the transmitted
shock wave propagating in a specially designed test sec-
tion as shown in Fig. 1, where a small cross-section shock
tube is connected to a large cross-section chamber. The
transmitted shock wave is planar while it propagates in the
shock tube, but diffracts quickly into a three-dimensional
configuration after it discharges into the chamber. This
transmitted shock will reflect, first from the middle of
chamber walls and then from the chamber corners. Truly
three-dimensional wave phenomena will be developed in
the geometric domain, and is a useful case for the funda-
mental study on three-dimensional shock propagation.

The objective of this paper is to investigate the three-
dimensional shock wave propagation and reflection. The
Euler equations were chosen as the governing equations
and solved using the dispersion-controlled scheme (Jiang
1993 and Jiang et al. 1995). The pioneer work has demon-
strated that the viscous effect on shock wave propagation
and reflection is negligible, but it will have some effects on
the beginning process of the shock-wave/primary-vortex
interaction. Moreover, viscosity plays an important role

in the vortex break-down process of the later stage of the
interaction. Considering the objective and the above dis-
cussion, we validated numerical solutions with experimen-
tal results obtained by using holographic interferometry to
demonstrate its reliability, and focused our discussion on
the three-dimensional shock wave propagation, reflection
and diffraction. The shock/vortex interaction at its initial
stage will be mentioned conceptually, since it is believed
that the beginning process of the interaction may be af-
fected more or less if measured in flow variables, but the
main configuration of the shock/vortex interaction will re-
main unchanged. The vortex break-down and turbulence
generation will be left for future study where viscosity and
turbulence models must be included in numerical simula-
tions.

2 Governing equations
and numerical methods

Assuming that the flow field in the present study is sym-
metrical and viscosity effects on shock wave propagation
are negligible, a hyperbolic system of three-dimensional
conservation laws for a perfect gas in Cartesian coordi-
nates can be written as
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where the primitive variables in the unknown U are den-
sity ρ, velocity components u, v and w, respectively. p is
the fluid pressure and e, the total energy per unit volume,
is related to the equation of state for perfect gas given by
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where γ, the specific heat ratio, is taken as 1.4 for air in
the present numerical simulations.

The explicit difference equations of Eq. (1) discretized
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and {
F± = A±U
G± = B±U
E± = C±U

, (10)

where A, B and C are the Jacobian matrices of ∂F/∂U,
∂G/∂U and ∂E/∂U, respectively. The (·)+ or (·)− su-
perscript signs denote flux vector splitting according to
the Steger and Warming method. The time-marching in-
tegration was performed using a Runge-Kutta algorithm
of second-order accuracy. As to the dispersion controlled
scheme, it was proposed by Jiang (1993) and Jiang et al.
(1995) based on the dispersion conditions derived by con-
sidering the modified equation proposed by Warming and
Hyett (1974). The conditions require that shock-capturing
schemes must have different phase errors (leading or lag-
ging) to avoid non-physical oscillations near shock waves,
which can be achieved without any need for additional
artificial viscosity. Such a characteristic is very helpful
to highlight the fine structures of shock wave reflections,
which may, otherwise, be smeared by the artificial viscos-
ity.

Following the assumption that the flow field is sym-
metrical, only one quarter of the computational domain as

a

b

Fig. 2a,b. Side views of the transmitted shock wave diffract-
ing near the open end of a square shock tube at a Mach number
of Mi = 1.5. a Numerical interferogram; b experimental inter-
ferogram

shown in Fig. 1 needs to be calculated. Reflecting bound-
ary conditions were specified both on solid walls and the
planes of symmetry. Non-reflecting boundary conditions
were applied at the inflow and outflow boundaries. The
equally-spaced grid system of 600×110×110 mesh points
was used and the Courant number was taken as 0.5 in all
the numerical simulations.

3 Validation of numerical algorithms

In order to verify the numerical algorithms and validate
the numerical solutions, a transmitted shock wave dis-
charging from the open end of a square cross-section shock
tube into ambient air at a Mach number of Ms = 1.5 was
simulated. The geometry of the open end is similar to the
one shown in Fig. 1, but without the large cross-section
chamber. The shock wave diffraction here is the same as
that to be investigated before the transmitted shock wave
is reflected from the chamber wall. Experiments were con-
ducted in a 40 mm × 40 mm square cross-section tube be-
ing 840 mm long, which is connected to a 60 mm ×150 mm
diaphragmless shock tube in the Shock Wave Research
Center, Tohoku University, Japan. The diffraction of the
transmitted shock wave was visualized from three viewing
directions with double exposure holographic interferome-
try (Casey and Takayama 1991, Jiang et al. 1999).

By integrating the three-dimensional density distribu-
tion along light rays, computational interferograms were
constructed for direct comparison with experimental in-
terferograms (Jiang and Takayama 1999). Numerical and
experimental results viewed from three viewing directions
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a

b

Fig. 3a,b. Corner views of the transmitted shock wave
diffracting near the open end of a square shock tube at a Mach
number of Mi = 1.5. a Numerical interferogram; b Experimen-
tal interferogram

were given from Figs. 2 to 4. Figure 2 shows the side
view of the shock wave diffraction, which is obtained by
viewing from the direction normal to the side-wall of the
shock tube. Figure 3 shows the corner view that is created
by viewing along the diagonal line of the chamber cross-
section. Figure 4 shows the axial view from a direction of
15◦ off the axis of symmetry.

Upon carefully examining each pair of interferograms
shown from Figs. 2 to 4, it is seen that the agreement be-
tween the numerical results and the experimental data is
excellent because of the fact that the number of fringes and
their distributions coincide very well with each other in all
the three pairs of flow images. The discrepancy observable
between the numerical and experimental interferograms is
only near the exit in Figs. 2a and 3a. This is due to the
lack of the resolution for displaying these numerical im-
ages, that is, there are not enough pixels in the computed
images to distinguish as many fringes as in the experimen-
tal interferograms as shown in Figs. 2b and 3b, where the
density gradients are very high. At least three pixels are
necessary to visualize one fringe: a dark pixel between two
white pixels. If the space between two fringes is smaller
than one pixel, computed fringes will be displayed incor-
rectly. This problem can be avoided if the numerical image
is created with a smaller number of fringes. See, for ex-
ample, the image shown in Fig. 4a, where the two results
match well with each other. Apart from this minor discrep-
ancy, all the wave phenomena, such as the non-uniform
flow expansion created at corners, the transmitted shock
wave, the secondary shock waves, and the primary vortex
loop, appear to be identical. From the direct comparison
of these results obtained by viewing from three viewing
directions, it can be concluded that the numerical solu-

a

b

Fig. 4a,b. Axial views of a three-dimensional shock wave
diffracting near the open end of a square shock tube at Mi =
1.5. a Numerical interferogram; b experimental interferogram

tions are well validated and the numerical algorithms are
acceptable for the present study.

It is obvious that for the validation of numerical simu-
lations of such a flowfield with shock waves, a check on the
numerical solutions with only a limited set of point mea-
surements is not sufficient. A comparison between topolog-
ical flow structures of the whole flowfield from both numer-
ical and experimental results must be included in order to
gain confidence on the numerical simulations. Moreover,
since experimental results are not available in most of the
cases under the CFD study, the validation cases have to be
carefully selected so that the reliability of the numerical
simulations could be demonstrated.

4 Results and discussion

In the following discussion, three major issues are espe-
cially emphasized in the present study. The first issue is
the three-dimensional reflection of the transmitted shock
wave, the pattern of which may vary with its Mach num-
ber. The second one is the spatial structure of the trans-
mitted shock wave, which will transform from a planar to
a three-dimensional one. The last is the possibility of ver-
ification of the observed wave phenomena with future ex-
perimental work, which is necessary because the flowfield
under the CFD study is usually so complex that the ex-
periments could be too difficult to be carried out by CFD
researchers. By presenting numerical results that show the
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special features of the investigated flowfields which could
be visualized and demonstrated experimentally, collabora-
tions between experimentalists and CFD researchers can
be promoted, and the research on flow mechanics will also
benefit.

4.1 Three-dimensional shock wave propagation
at Ms = 1.5

The first case is the transmitted shock wave propagating
at Ms = 1.5 in the test section as shown in Fig. 1. The
width of the chamber to that of the shock tube is 2 : 1.
Sequential isopycnics of the numerical solutions are pre-
sented in Fig. 5, where four time sequential results show
the evolution of the transmitted shock wave. The upper
half of each result shows the density distribution in the di-
agonal plane and the lower half shows that in the mid-wall
symmetrical plane.

Figure 5a shows the wave propagation at the instant
shortly after the transmitted shock wave is discharged
from the shock tube into the chamber. The shock wave
diffraction at the shock tube exit is similar to that in
the CFD validation case, as shown in Fig 4. Figure 5b
shows the further propagation at the moment when the
transmitted shock wave reflects from the chamber wall in
the mid-wall symmetrical plane, and the resulting shock
wave reflection pattern is a regular reflection. Meanwhile,
the transmitted shock wave in the diagonal plane has not
reached the chamber corners yet, being still in the diffract-
ing phase. From these two figures, it is observed that the
flow expansion created near the corners in the diagonal
plane is stronger than in the mid-wall symmetrical plane.
This is concluded by examining the density distribution
behind the shock wave near the wall in both the upper half
and the lower half of Fig. 5a, where the diffracting shock
wave appears different in its intensity. Because of the non-
uniform flow expansion, a secondary shock wave resulting
from the locally-developed supersonic flow appears ear-
lier near the primary vortex loop in the diagonal plane,
as shown in Fig. 5b. The primary vortex loop develop-
ing from the shear layer originating from the edges of the
shock tube does not move at a constant speed in the same
direction due to the locally-developed supersonic flow. The
part near the corner in the diagonal plane moves further
downstream, as shown in the upper half of Fig. 5b, but the
part in the mid-wall symmetrical plane moves more in the
radial direction, as seen in the lower half of Fig. 5b. There-
fore, the primary vortex loop, being of planar and square
shape at its initial stage, is distorted and twisted into a
three-dimensional one. The observation agrees well with
the experiments reported by Abe and Takayama (1989)
and Watanabe et al. (1992).

The shock wave reflection in the mid-wall symmetrical
plane transforms from the regular to the simple Mach re-
flection in Fig. 5c. In the meantime, the regular reflection
occurs near the chamber corners in the diagonal plane,
so the transition from the regular to the simple Mach re-
flection exists spatially at the same time. Furthermore, in
the upper half of Fig. 5c, a weak shock wave is observable

Fig. 5a–d. Sequential isopycnics of three-dimensional shock
wave propagating in the large chamber at Ms = 1.5, the upper
half of each result showing the density in the diagonal plane
and the lower half representing that in the mid-wall symmet-
rical plane

behind the reflected shock wave and looks unusual. One
can imagine that when the reflected shock waves of reg-
ular reflection pattern merge in the diagonal plane from
two sides of the chamber wall, a stronger reflected shock
wave is created – referred to as the first reflected shock
wave – and propagates faster. This leads to a mismatch
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of the reflection angle of the transmitted shock wave with
its incident angle at the corner. Therefore, a new reflected
shock wave behind the first one is generated with the re-
flection angle consistent with the incident angle, which is
the so-called second reflected shock wave.

The first reflected shock wave interacts with the pri-
mary vortex loop in the mid-wall symmetrical plane, as
shown in the lower half of Fig. 5c, which is a classical
research topic of the shock-vortex interaction, but here
the interaction is three-dimensional, which may results in
more flow instability. The second reflected shock wave is
clearly observable in Fig. 5d, and the Mach stem grows
longer. At this time instant, a four-shock system develops,
consisting of the transmitted shock wave, two reflected
shock waves and a Mach stem. There are two triple-points
in the system, but no shear layer is obviously observable
here (in the diagonal plane) and also in the mid-wall sym-
metrical plane. The new wave system occurring in the di-
agonal plane in Fig. 5d is a typical Mach reflection but
with an extra reflected shock wave. Considering the above
explanation, this wave phenomenon may be observable
only in three-dimensional cases because it develops from
the collision of two shock wave reflection systems. In ad-
dition, the interaction of the second reflected shock wave
with the primary vortex loop and the focusing of the first
reflected shock wave on the axis of symmetry are observ-
able in Fig. 5d. These processes will lead to the generation
of vortices and turbulence, the research on which would
require more complex physical and mathematic models,
and is outside the scope of the present study.

4.2 Three-dimensional shock wave propagation
at Ms = 2.0

In order to clarify effects of the shock Mach number on
shock wave reflection, the second case was carried out for
a higher Mach number of Ms = 2.0. Sequential isopycnics
of its numerical results are presented in Fig. 6 with the
same display style as used in Fig. 5.

Generally speaking, the wave phenomena observable
here are similar to those observed in the first case, such
as the non-uniform flow expansion, the locally-developed
secondary shock wave, the shock/vortex interaction and
the four-shock system. However, there are several differ-
ences worth pointing out. The first one is that the sec-
ondary shock wave in case 2 appears stronger than in the
first case. By examining the density distributions shown
in Figs. 5b and 6b, the secondary shock wave is readily
observable in the mid-wall symmetrical plane in Fig. 6b,
but not in Fig. 5b. This indicates that the local super-
sonic flow develops faster in case 2 due to the higher Mach
number. The second difference is that the second reflected
shock wave in the diagonal plane of case 2 is much more
intense than that in case 1. This is readily recognized by
examining the upper half of Figs. 5c and 6c, where the sec-
ond reflected shock looks like compression waves in case
1, but has developed into a shock wave in case 2. The
last difference is related to the development of the con-
tact surface originating from the lower triple-point of the

Fig. 6a–d. Sequential isopycnics of three-dimensional shock
wave propagation in the large chamber at a Mach number of
Ms = 2.0, the upper half of each result showing the density
in the diagonal plane and the lower half showing that in the
mid-wall symmetrical plane

four-shock system, which is clearly observable in Fig. 6d,
but hardly identifiable in Fig. 5d. Moreover, there is no
contact surface appearing in the Mach reflection at the
mid-wall symmetric plane in Fig. 5d, but it is quite ob-
servable in Fig. 6d. All of the processes discussed above
seem to be due to the higher shock Mach number. The
basic shock wave configuration of the three-dimensional
shock wave propagation is not affected significantly, but
more intense shock wave interactions are induced.
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Fig. 7. Iso-density surfaces showing the three-dimensional con-
figuration of the transmitted shock wave in the large square
cross-section chamber at a Mach number of Ms = 2.0

4.3 Wave configuration of the transmitted shock wave
at Ms = 2.0

The three-dimensional configuration of the transmitted
shock wave after its reflection from the chamber walls is
presented in Fig. 7. The figure consists of the isopycnics
in two diagonal planes and two iso-density surfaces. The
first iso-surface of ρ = 1.12 shows the transmitted shock
wave, and the other of ρ = 2.3 shows the reflected shock
waves. The isopycnics in the two diagonal planes indicate
the relation between the transmitted shock wave and the
first or the second reflected shock wave.

From Fig. 7 it was observed that the transmitted shock
wave in the central area of the large chamber still remains
a spherical shape, the Mach stem near the chamber walls is
curved forward having a three-dimensional configuration,
and the part of the Mach stem near the chamber corners
appears planar. It is also worth pointing out that the first
reflected shock wave near the chamber corner induces a
more intense density due to shock wave collision than that
in the mid-wall symmetrical plane. Moreover, the density
behind the second reflected shock wave in the diagonal
plane near the chamber corner becomes even more intense
due to the second shock wave reflection. This implies that
the second reflected shock can catch up with the first one
and the two triple-points will merge together. The iso-
density surface behind the first reflected shock wave re-
veals the configuration of the second reflected shock wave,
which confirms that the second shock wave is the reflection
of the transmitted shock wave.

Figure 8 shows the configuration of the first reflected
shock wave at the same instant as that shown in Fig. 7.
The figure, being similar to Fig. 7, also consists of the
isopycnics in two diagonal planes and two iso-density sur-
faces: the iso-density surface of ρ = 1.12 in Fig. 7 is re-
placed with one of ρ = 1.7. The newly-added iso-density
surface shows the configuration of the first reflected shock

Fig. 8. Iso-density surfaces showing the three-dimensional con-
figuration of the first reflected shock wave at a Mach number
of Ms = 2.0

wave and how it merges to generate an intense reflected
shock at the chamber corners. The Mach stem of the trans-
mitted shock wave is shown more clearly in Fig. 8, which
supports the conclusion derived from Fig. 7. From the con-
figuration of the first reflected shock wave, one can imagine
that a strong jet will be generated later once the first shock
wave merges on the axis of symmetry of the chamber. This
will result in a square Mach disk shock that can catch up
with the transmitted shock wave later and strengthens it.

From Figs. 7 and 8, it can be concluded that the
strengthened Mach stem due to the shock reflection from
the chamber walls will propagate faster, catches up and
overtakes the other part of the transmitted shock wave.
On the other hand, the reflected shock wave will focus
later in the centre area of the chamber, from which a Mach
disk shock will develop. This shock can catch up with the
transmitted shock wave in the centre area and strengthen
it. In this way, the three-dimensional transmitted shock
wave in a square chamber will transform back again into
a planar one after it has propagated in the chamber for a
certain distance.

4.4 Computational interferograms

Figures 7 and 8 show the complexity of the three-
dimensional shock wave propagation in a square chamber,
from which the four-shock system appears to be an instinc-
tive characteristic of the shock wave reflection. A question
is whether it is possible to visualize the four-shock system
with flow visualization techniques. If possible, what kind
of flow images can be expected to see. A computational
interferogram showing the corner view of the shock wave
reflection is computed and presented in Fig. 9 to demon-
strate the possibility. In addition, the numerical density
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Fig. 9. Computational interferogram of the transmitted shock
wave propagating at a Mach number of Ms = 1.5 in the large
chamber to demonstrate the possibility of visualizing experi-
mentally the four-shock system, the corner view

distribution in the diagonal plane is also given in Fig. 10
as a reference, where isobars are plotted in its upper half
and isopynics in the lower half. A very complicated fringe
pattern appears in the Fig. 9 and looks quite different
from the wave configuration shown in Fig. 10. As is well
known, this fringe pattern results from the effect of inte-
grating three-dimensional density distributions along the
light paths. Fortunately, two discontinuities in the fringes
behind the transmitted shock wave are still observable,
which are located in the same positions as the first and
the second reflected shock waves shown in Fig. 10. There
is no doubt that the two discontinuities in Fig. 9 represent
the two reflected shock waves. Thus, the four-shock sys-
tem can be visualized experimentally, although the flow
visualization images have to be carefully interpreted by
considering the three-dimensional effects.

From the results shown in Figs. 9 and 10, one can see
that it is possible to use flow visualization images for val-
idating numerical solutions if such experimental results
can be obtained. However, the flow visualization images
may also lead to a confusion in the physics involved in
the visualized flowfield because artificial effects have been
introduced in the experiment due to the limitation of the
current flow visualization techniques. Nowadays, most of
the interesting problems are three-dimensional in nature
and contain many transient phenomena. Investigations
into such flowfields are very difficult, but important and
useful. It may be too difficult to require experimental flow
visualization to provide all the necessary information for
understanding these complex flowfields, but it may be pos-
sible to circumvent this difficulty through interferometry,
provided that interferogram images are clear enough to
validate numerical solutions. In other words, experimental
images of three-dimensional flowfields need only to provide
data for validating numerical solutions. The numerical re-
sults thus validated, in return, would provide more useful
information to interpret the complex flowfields.

Fig. 10. Isobars (the upper half) and isopynics (the lower
half) showing the numerical results in the diagonal plane of
the transmitted shock wave propagating at a Mach number
of Ms = 1.5, presented as a reference to the computational
interferogram

5 Conclusions

From the present numerical study, a four-shock system,
consisting of a transmitted shock wave, two reflected shock
waves and a Mach stem, is observed near the corner of
the large chamber, which results from the interaction of
reflected shock waves from the two sides of the chamber
walls. This wave system can be a typical Mach reflection
pattern in three-dimensional cases. The transition of shock
wave reflection from the regular to the Mach reflection is
also observed on the chamber walls at the same time in
space due to the spherical shock wave reflecting from the
square cross-section chamber. Moreover, the non-uniform
expansion due to shock wave diffraction leads to the gen-
eration of a three-dimensional secondary shock wave re-
sulting from locally-developed supersonic flows. Both the
first and second reflected shock waves interact with the
three-dimensional primary vortex loop and will lead to a
distorted vortex loop as well as the generation of turbu-
lence, the development of which are of great interest for
further studies.
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