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Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma = 0.7 *
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Direct numerical simulation (DNS) of a spatially evolving flat-plate boundary layer transition process at free
stream Mach number 0.7 is performed. Tollmien—Schlichting ('I-S) waves are added on the inlet boundary as the
disturbances before transition. Typical coherent structures in the transition process are investigated based on the
second invariant of velocity gradient tensor. The instantaneous shear stress and the mean velocity profile in the
transition region are studied. In our view, the fact that the peak value of shear stress in the stress concentration
area increases and exceeds a threshold value during the later stage of the transition process plays an important

role in the laminar breakdown process.
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The study of the flat-plate boundary layer tran-
sition from laminar flow to turbulent flow is now one
of the key problems in turbulence research. Physically
understanding the mechanism in turbulence transition
process is helpful to control the acoustic noise of air-
craft and to reduce the friction coefficient over an air-
craft’s surface. Precisely predicting the starting point
of turbulence transition has significant influence on
the shape design and heat protecting arrangement of
aircraft.

Throughout the transition process from laminar
flow to turbulent flow, coherent vortex structures play
very important roles. In recent years, there have been
several investigations of the coherent vortex structures
in transitional boundary layers. Ganapathisubramani
et al.lll performed particle image velocimetry (PIV)
experiments and measured vortex packets in the loga-
rithmic layer, finding that those vortex structures con-
tribute a large part of Reynolds shear stress while oc-
cupying a rarely small area of the total. Zhou et al.l?
performed a direct numerical simulation (DNS) of the
channel flow and investigated the generation mech-
anism of the coherent hairpin vortex packets, sug-
gesting that an initial vortex exceeding a threshold
strength can generate new hairpin vortices before and
after the primary vortex and forms a coherent packet
of hairpins which propagates downstream coherently.
Suponitsky et al.’] numerically studied the turbulent
shear layers and their results have demonstrated that
a small-amplitude initial disturbance evolves into a
streaky structure, and a large-amplitude disturbance
evolves into a hairpin vortex. Bake et al.[* studied the
mechanism of turbulence development in periodic Kle-
banoff transition by both experiments and DNS. They
found that the interaction between vortical structures
and high-shear layers can accelerate the transition to
turbulence.

In this Letter, we perform the DNS of spatially
evolving compressible flat-plate boundary layer tran-

sition process at free stream Mach number 0.7 by solv-
ing the compressible Navier—Stokes equations.[®! Typi-
cal coherent vortex structures in transition process are
found in our results and the characteristics of those co-
herent vortex structures are discussed.

The inlet boundary condition can be written as

3

f(y7 Z) = f(y) + Z Ekf(y)ei(ﬁkz—u)kt)’

k=1

where f can be replaced by wu,v,w,p, and T,
f(y) is the steady flow profile obtained from two-
dimensional laminar flat-plate boundary at =z =
30 inch. The disturbances are a two-dimensional
Tollmien—Schlichting (T-S) wave and a couple of con-
jugate three-dimensional T-S waves. The amplitudes
€k, spanwise wave numbers [ and frequencies wy, are
shown in Table 1; fk(y) are corresponding eigen func-
tions. The T-S wave parameters are obtained by us-
ing the code SAYR provided by Zhou Heng and Luo
Jisheng at TianJin University.

Table 1. Disturbance parameters.

€3,03,ws
0.0005, —4.00, 1.56

€2, B2, w2
0.0005, 4.00, 1.56

w1, B1, w1
0.04, 0.00, 1.56

A non-slip isothermal boundary condition is used
at the wall and non-reflecting boundary conditions are
used at upper boundary and outflow boundary. The
convection terms in compressible Navier—Stocks equa-
tions are approximated by a seventh-order accuracy
upwind finite difference scheme, and the viscous terms
are approximated by an eighth-order accuracy central
finite difference scheme. The time evolution is car-
ried out by the third-order TVD type Runge-Kutta
method. ]

The flow parameters and mesh parameters in the
present computations are list in Table 2, where Ma,
is the free stream Mach number; Re., is the free
stream Reynolds number (using one inch as the length
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unit); T,, is the temperature of the wall. The total
number of computational mesh is 1000 x 100 x 320.
Fine mesh is adopted near the wall in the flat-plate
normal direction. Uniform meshes are used in the

streamwise and spanwise directions.

Table 2. Computational parameters.

M(loo RCOO Tw
0.7 50000 1.098
N, x N, x N, Ly X Ly x L, AT X Ayd x Azt

1000 x 100 x 320 10.00 x 0.65 x 1.57 20.25 x 1.013 x 10.13

Figure 1 shows the friction coefficient over the wall
surface along the streamwise axis. The friction coeffi-
cient is defined as Cy = 7,/ (pu?/2), Ty = i OU/ DY)y
The computational results are compared with the the-
oretical formula both at laminar section and at turbu-
lent section in Fig.1. Agreements between the com-
putational and the theoretical results are good. The
theoretical formula of friction coefficient for laminar
flow is defined by Chen!™ as Cyr = 0.6641/+/Re,,

and the theoretical formula of friction coefficient for

turbulent flow is defined by White et all®] as follows:

0.455 0.06 1 1 —2
=~ |1 (—Rz— -]
! s BT

1/2

— VT, -1, A= ("5 SRy VEY ) .

A CTw
In the interval z = 4.5-8 between those two sections,
there is a sudden increase of the friction coefficient
from 0.0005 to 0.004. This is due to the appearance
of three-dimensional vortex and the breakup of large-
scale coherent structures in the transition process.

Figure 2 shows the normalized mean Van Direst
velocity!® profile at z = 9.9. The results show good
agreements with both the wall law (ut = y™) and the
logarithm law (u™ = 25logy™ + 5.0). Figure 3 shows
the turbulent intensity profiles, which are normalized
by the local mean streamwise velocity at x = 9.9,
and the corresponding incompressible flow experiment
datal®! are also plotted in Fig. 3. The DNS results are
in good agreement with the experiment results. It is
suggested that the compressibility effects are not so
remarkable and Morkovin’s hypothesis is tenable in
our computation case.

Skin friction

0,005 T — . - —
DNS results 20r ad - 1 O Uims/U (experiment)
0004k —=e— Laminar equation [ ] o, 0.4F A Vims/U (experiment) o
i Turbulent equation s y |1 = O Wims/U (experiment)
7 1er /7 1 £ Usma/U (DNS)
sk 1 i < 0.3t === Vim/U (DNS) 1
0.00 ] i, = === Wims/U (DNS)
+ 5 ©
210 Pes E 4 0.2 \
H ~ \
0.002- - i !,/ j; : D\\
I sk D_I‘}IS results o 5 Oopes B d
0.001 | ] --- _U+ 2. 5+log( )+5.0] E o0.1f —
[ ] I . — y - -A-— -
IV
L 1 1 1 f 1 5 '1 5 . L 3 a” ! L ! L o
0 2 4 6 8 10 10 10 10 10 0 10 20 30 40 50
x y+
Fig. 1. Skin-friction coefficient along Fig. 2. Mean van Direst velocity pro- Fig. 3. Turbulence intensities normal-

the flat-plate.
at = 9.9 inch.

Our attention focuses on the mechanism in the
later stage of transition process and the evolvement
of coherent structures in the laminar breakdown pro-
cess. The DNS results show that when initial T-S
waves propagate downstream with the mean flow, the
secondary instability leads to the appearance of quasi-
streamwise vortex (A vortex) and hairpin vortex.

Figure 4 shows the instantaneous isosurfaces of
Q = 10 at different times. Here @ is the second invari-
ant of the velocity gradient tensor, which is defined as
follows:

Q- (%% - %%) (%% - %%)
Oxy, Oxy  Oxo Oxq Oxy Oxry  Oxs Oy
(2ua s _ O Doy
Oxg Oxy  Oxg Oy

The A vortex is the precursor of hairpin vortex.
The hairpin vortex first forms in near wall region and
logarithm layer, then the head of hairpin vortex rises

file normalized by wall shear velocity

ized by local mean velocity at z = 9.9
inch.

up and leaves the near wall region with the ejection
of low-speed flow (Fig.4(a)). The head keeps rising
into a higher speed layer and is stretched and car-
ried downstream by the shear stress of the mean flow.
The vortex strength of the head becomes stronger be-
cause it obtains kinetic energy supply from the higher
speed mean flow. Compared the pictures at different
times in Fig. 4, it is found that the head of hairpin vor-
tex moves faster than the hairpin vortex’s leg in the
streamwise direction. The head averaged convective
velocity (in a time period) of the hairpin vortex head
is 0.882, and the corresponding averaged convective
velocity of the leg is 0.259. Because of the convec-
tive velocity difference between the head and the leg,
the hairpin vortex continues becoming longer while it
propagates downstream.

Based on our results and observation, the region
where hairpin vortex located is closely related with
high instantaneous Reynolds shear stress. This is con-
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Fig. 4. Instantaneous isosurfaces of Q@ = 10 at different times: (a) ¢t = 15.61, (b) t = 16.62, (c) t = 17.63, (d) t = 27.69.
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Fig. 5. Spanwise distribution of normalized shear stress
—UVp at different times and at different locations.

sistent with the PIV experimental results of Ganap-
athisubramani et all!l Figure 5 shows the spanwise
distribution of shear stress —uvy (—uvy = —uv/—uv)
at the corresponding times of Figs.4(a)-4(c) at the
streamwise location of the hairpin vortex head, where
—uv is the instantaneous Reynolds stress and —uw is
the Reynolds shear stress averaged on the y — z plane
at the same streamwise location. The hairpin vor-
tex is stretched longer by the mean flow shear stress
and its head rises higher away from the wall due to
its own self-introduction during further development,
and this in reverse leads to the shear stress around
the head keeps increasing. After the shear stress ex-

ceeds a threshold value, the hairpin vortex breaks up
at its neck area and forms a lot of new small-scale
vortices around the breaking points (Fig.4(b)). As it
propagates downstream, the large-scale hairpin vortex
becomes a packet of vortices (Fig.4(c)). This whole
vortex packet convects downstream integrally and is
continually stretched by the mean stress. Then, all
the large-scale structures break down into small-scale
vortices, and form a turbulent spot. Finally, turbulent
flow is formed after adjacent turbulent spots merge
with each other (Fig.4(d)).

Figure 6 shows the side views of ) isosurfaces. Af-
ter the neck of hairpin vortex breaks up, the head
sheds off from the hairpin vortex and forms an iso-
lated and free vortex. The free vortex does not vanish
quickly but propagates downstream along the outer
layer of the turbulent boundary. Wang et al.l1 ob-
served this process in their DNS of incompressible tur-
bulent flow and it plays an important role in the en-
ergy transportation of boundary layer flow.

Figure 7 records the streamwise velocity oscillation
at the point x = 5.80, y© = 99.06 (in the logarithm
layer), z = 0.79 in a time period t = 22.86-26.86.
During t = 22.86—24.40 the streamwise velocity curve
is smooth, because the hairpin vortex has not passed
this point yet. During t = 24.40-26.69 the curve oscil-
lates heavily, this is because the hairpin vortex breaks
up at its neck and breaks down into vortex packet dur-
ing this period, then passes this point with the high
frequency oscillation.
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Figure 8 shows the velocity profiles along the
streamwise axis in the interval x = 4.5-6.3, where the
hairpin vortex locates at time ¢ = 24.18 (Fig.6(a)).
In Fig. 8, the inflection points appear in the interval
x = 5.0-6.0, and the deficit of velocity reaches the
peak at z = 5.8, i.e. the location of hairpin vortex
head (Fig.6(a)). This is consistent with the sugges-
tion of Huang et al.1Y) Inflection points and the deficit
of velocity disappear in the interval z = 6.1-6.3, be-
cause the flow is laminar in the area between the hair-
pin vortex and previous turbulent spot.
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Fig. 6. Side views of instantaneous isosurfaces of Q = 10
at different instants in a time period.
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Fig. 7. Streamwise velocity along the time axis.

030" " TP T
0.25F .
0.20F .
> 0.15F P . .
0.10F il \ ]
0.05F o i .
W AP 2 ]
0.00 beztiszivizen?’ e
4.5 5.0 5.5 6.0 6.5 7.0
T
Fig. 8. Velocity profiles along the streamwise axis at

t = 24.18.

In summary, we have carried out the DNS of a
spatially evolving subsonic boundary layer transition
from laminar flow to turbulence at Ma = 0.7. T-S
waves are used as the inflow disturbances. Coherent
vortex structures have been observed and discussed.
It is found that breakup from large-scale structures to
small-scale vortices is the beginning of the turbulent
flow. Shear stress and velocity deficit are found to be
concentrated both on the head and the breaking point
of hairpin vortex. In our viewpoint, the fact that the
peak value of shear stress in the stress concentration
area increases and exceeds a threshold value during
the later stage of the transition process plays an im-
portant role in the laminar breakdown process.
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