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Numerical Simulation of Rock Failure and Earthquake Process on
Mesoscopic Scale

YU-CANG WANG,1 XIANG-CHU YIN,1,2 FU-JIU KE,1 MENG-FEN XIA1 and
KE-YIN PENG2

Abstract—On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and
Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a
2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the
fracture criterion and rules of changes between linking states are given, the particle positions, velocities
and accelerations at every time step are calculated using a finite-difference scheme, and the configuration
of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid
(especially under pressure) and simulation of earthquake dynamics are made.
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process.

Introduction

Earthquake prediction still remains one of the most difficult problems, due to
many reasons of which the poor understanding of the physical process of earth-
quakes is a major one. Essentially, an earthquake is a rapidly occurring fracture of
the rocks in the interior of the earth (KNOPOFF, 1993) (intraplate earthquake), or
is a slip instability controlled by friction (BRACE and BYERLEE, 1966) (an earth-
quake in plate boundaries). Either a damage theory to predict precisely the failure
of such brittle solids is still in a very rudimentary stage, or full understanding of
friction phenomenon has not come about, which may be the scientific reason for the
difficulty of earthquake prediction.

Similarly, in seismology, it is still very difficult to study analytically the whole
earthquake occurrence (spatial and temporal distribution of seismicity) with a large
number of coupled fault systems in a geologically complex area.
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In recent years, numerical simulation began to play a more important role in
studying such complex phenomena. There are already many successful numerical
models proposed to simulate earthquakes, such as the spring-block model (BUR-

RIDGE and KNOPOFF, 1967; CARLSON and LANGER, 1989; CARLSON et al., 1989),
cellular automata (BARRIERE and TURCOTTE, 1991; LOMNITZ-ADLER, 1993; SAM-

MIS and SMITH, 1999), and SOC model (BÅK and TANG, 1989). These models only
simulate the general aspects and statistical behaviors of the earthquake process.

Some simulations, such as finite element method (TANG, 1997), finite difference
(DAY, 1982; MADARIAGA et al., 1997), boundary integral equation method
(FUKUYAMA and MADARIAGA, 1995) are based on the macroscopic and continu-
ous media. But the earth’s crust is far from being continuous, it contains many
discontinuities of different sizes.

Molecular Dynamic simulation (MD, HERRMANN, 1989) provides a natural
way to study the discrete behavior on a molecular/atomic scale, but when modeling
earthquake phenomena, the scale must be many magnitudes coarser. It is difficult
and unnecessary to model the earthquake process on a molecular/atomic scale.
Discrete Element Method (DEM, CUNDALL and STRACK, 1979) is suitable to
model the dynamic behavior of an assemblage of blocks and granular materials
with discontinuities, and was widely used in engineering and geology.

Several kinds of discrete models have been used in mechanical and engineering
fields to model failure and damage evolution of materials. Lattice models are
commonly used. Central-force lattice or truss (ASHURT and HOOVER, 1976;
CURTIN and SCHER, 1990a,b) is the simplest one, in which only axial forces can be
transmitted. These models are simple and easy to handle. However, if the simula-
tion is not on a molecular/atomic scale, negligence of transverse forces and
moments may cause some problems, especially under compressive loads. On one
hand, it may yield an unrealistic failure mode. On the other hand, if all link rigidity
parameters are identical, Poisson’s ratio is equal to 1/3, so central-force lattice has
only one parameter, while an isotropic elastic solid is defined by two parameters. In
the beam lattice (frame) (MONETTE and ANDERSON, 1994), bending rigidity is
included to model forces due to the relative rotations of the links at nodes. In some
lattice models (BORN and HUANG, 1954; ASKAR and CAKMAK, 1968; BATHURST

and ROTHENBURG, 1988), axial and transverse forces can be transmitted.
Theoretically, there should be three kinds of relative displacements and there-

fore three kinds of interactions in order to make a perfect description of relative
displacement between two adjacent particles. Therefore three kinds of rigidity
parameters should be introduced. However, in order to make a realistic simulation,
the three lattice parameters must match the two macroscopic elastic parameters and
the failure criterion must be chosen carefully. Although a few researchers (JAGOTA

and DAWSON, 1988a,b; JAGOTA and SCHERR, 1993; TOI and CHE, 1994; TOI and
KIYOSUE, 1995) used models with three kinds of interactions transmitted, they did
not describe how to determine the lattice parameters.



Numerical Simulation of Rock Failure 1907Vol. 157, 2000

Lattice models have been applied to model earthquake phenomena. For exam-
ple, MORA and PLACE (1993, 1994, 1998) developed a lattice called ‘‘the Lattice
Solid Model (LSM)’’ to study earthquake dynamics whose initial version involved
central forces, and used it to simulate the effect of fault gouge and surface
roughness on friction and tried to explain the heat flow paradox. SCOTT (1996)
modeled seismicity and stress rotation using the discrete lattice with central and
shear forces transmitted.

On the basis of MORA and PLACE’s LSM, DEM and Molecular Dynamic
simulation, we studied another kind of discrete model. In this paper we describe our
model first, then give the lattice parameters and some preliminary simulations on
the fracture of brittle solid (especially under compressive loads) and the earthquake
process.

About our Model

In our study, the material is also discretized into a number of round particles
linked by bonds and arranged into a 2-D triangular lattice (Fig. 1). The particles
are the smallest mesoscopic units which cannot be broken. The sizes of particles
range from millimeter (grains) to kilometer (geological blocks). Radial forces Fr,
tangential forces Fs and bending moment M are transmitted between the adjacent
particles, and every particle is described by three variables: positions x, y and spin
u, so there are three kinds of relative displacements between every adjacent particle
pair: radial displacement Dr, shear displacement Ds, and angular displacement Du.
If we use the linear relation of force and displacement, we have

Fr=Kr Dr

Fs=Ks Ds

M=Km Du

(1)

where Kr, Ks, Km are radial, tangential and bending rigidity.

Elastic Properties and Chosen of Mesoscopic Parameters

We demonstrated (see appendix) that if Kr, Ks, Km are identical, our model has
isotropic elastic properties, and under the condition of small strain, the mesoscopic
parameters Kr, Ks, Km should be chosen according to the macroscopic Young
modulus of elasticity E, and Poisson’s ratio n,

Kr=

3E

3(1−n)
(2)

Ks=aKr (3)
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Figure 1
2-D Discrete lattice model.

Km=

3r0

2E
18

(4)

where

a=
1−3n

1+n
(5)

n=
1−a

3+a
(6)

and r0 is the diameter of the particles. The equations above reflect the connection
between the mesoscopic and macroscopic parameters. From the equations above we
also know that the materials of n from 0 to 1/3 can be modeled, and if the
tangential rigidity is neglected (Ks=0), n=1/3.
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Fracture Criterion and States after Fracture

The link between two adjacent particles can break independently in the follow-
ing three different ways:
When radial extension force exceeds the maximum value Fr0,
or, when tangential force exceeds the maximum value Fs0,
or, when moment exceeds the maximum value M0.

Generally three kinds of interactions always exist at the same time. We use the
following empirical criterion similarly to judge if the link will break:

Fr

Fr0

+
�Fs �
Fs0

+
�M �
M0

]1. (7)

In the simulation, we choose Fr0=Kr(Dr)m=Krr0om, om=0.005–0.010, Fs0=CFr0

and M0=Dr0Fr0, where C=0.3–0.7 and D=1/6 are chosen empirically. The effect
of radial force on the tangential and bending fracture is considered.

There are four kinds of linking states between neighboring particles:
(A) Intact, (B) Sliding, (C) Locked by static friction, (D) Departing.
Table 1 shows whether or not the forces and moment can be transmitted in each
case.

The states can change according to:
(a) A�B, when (7) is met, and r5r0 and Vt"0
(b) A�D, when (7) is met, and r]r0

(c) B�C, when Vt=0
(d) C�B, when fs]msFr

(e) B�D, when r]r0

(f) C�D, when r]r0

(g) D�B, when r5r0 and Vt"0
(h) D�C, when r5r0 and Vt=0
where fs stands for static frictional force, ms refers to static frictional coefficient, and
Vt, is relative tangential velocity.

Table 1

fd and md are sliding frictional force and sliding frictional coefficient, respec-
ti6ely.

FsFr M

cancan canA
B can, only when sliding frictional force cannot

fd=mdFrr5r0

C can, only when static frictional cannot
r5r0 force

cannotcannotD cannot



Yu-Cang Wang et al.1910 Pure appl. geophys.,

Calculation of Static Friction

When two particles are locked by static friction, if the tangential rigidity is
chosen to be infinite (PLACE and MORA, 1999), the frictional forces are calculated
according to all forces acting on the particles. This is a difficult step considering
that frictional forces are all inter-dependent when infinite shear rigidity is chosen. In
our model, the tangential rigidity is not infinite, but a finite one. The static
frictional force can be easily decided by the relative tangential displacement
according to the principle of DEM. Figure 2 illustrates how the shear forces
between bonded particles are calculated. Similarly, static frictional forces are
calculated from the relative displacements at the contact surfaces (cf., Fig. 3).

Solution of Equation of Motion

The differential scheme of MD is used as in MORA’s model, with the only
difference of adding the equation of u. Due to the changes of linking states between
two adjacent particles (e.g., breaking and sliding), the forces and accelerations may
be discontinuous. These discontinuities are dealt with from t− +Dt to t+ +Dt, and
no breaking and sliding occurs from t+ to t− +Dt. However, the positions and
velocities are continuous. These quantities are calculated in the following way.

First, calculate the positions at t+Dt

Á
Ã
Í
Ã
Ä

Xb i(t+Dt)=Xb i(t)+Dt X %ib (t)+
(Dt)2

2
X¦ib (t+)

ui(t+Dt)=ui(t)+Dt u %i (t)+
(Dt)2

2
u¦i (t+)

. (8)

Second, calculate the forces (and moments) and accelerations at t− +Dt,

!X¦ib (t− +Dt)=Fb i(t− +Dt)/mi

u¦i (t− +Dt)=Mi(t− +Dt)/Ii

(9)

where mi and Ii are the mass and rotational inertia of the i-th particle. Then we
calculate the velocities at t+Dt

Á
Ã
Í
Ã
Ä

X %ib (t+Dt)=X %ib (t)+
Dt
2

[X¦ib (t+)+X¦ib (t− +Dt)]

u %i (t+Dt)=u %i (t)+
Dt
2

[u¦i (t+)+u¦i (t− +Dt)]
. (10)

Finally, judge whether breaking or sliding occurs between any particles pair, if
so, update the forces and accelerations from t− +Dt to t+ +Dt according to the
rules mentioned above.
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Figure 2
Sketch of calculation of shear forces using the Discrete Element Method in which a sample is subjected
to shear load. The initial sample (inset a), composed of two bonded blocks, is subjected to a shear force
(inset b). By assuming that the blocks are rigid, the resulting shear force between block 1 and block 2

can be calculated from the relative displacement of the blocks (inset c).
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Figure 3
Sketch of calculation of static frictional force. The initial sample (inset a) is composed of two unbonded
blocks locked by static friction. When subjecting the sample to a shear force, shear deformations occur
(inset b). By assuming that the blocks are rigid, the frictional forces locking the two blocks can be

calculated from the relative displacement of the two blocks (inset c).
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Viscosity is also introduced, so Fb i=Fi
1b +Fi

hb , Fi
1b includes elastic forces and

frictional forces, Fi
hb is viscous force. We use

Fij
hb = −h(V( i−V( j) (11)

where h is coefficient of viscosity. Equations (9), (10) and (11) indicate that due to
the viscosity, computation of the accelerations at t− +Dt requires the velocities at
t+Dt, however the velocities update also requires accelerations at t− + Dt, so
iteration must be used to calculate X %ib (t+Dt).

First, we choose a group of approximate trial solutions X0 %ib (t+Dt)

X0 %ib (t+Dt)=X %ib (t)+DtX¦ib (t) (i=1, N)

then use the following iteration scheme. (take x̃ %i (t+Dt) as an example),

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä

Calculate Fi
hb (Eq. 11)

Calculate Fb i(t− +Dt) and x¦i (t− +Dt) (Eq. 8) (Eq. 9)

Calculate x %i (t+Dt) (Eq. 10)

Compare x̃ %i (t+Dt) with x %i (t+Dt):

If
) x̃ %i (t+Dt)−x %i (t+Dt)

x %i (t+Dt)
)
]o then

x̃ %i (t+Dt)= x̃ %i (t+Dt) and repeat iteration

If
) x̃ %i (t+Dt)−x %i (t+Dt)

x %i (t+Dt)
)
5o then

x̃ %i (t+Dt)= x̃ %i (t+Dt) and stop iteration

where o stands for an iteration precision. The convergence rate is rapid and three to
four iterations were adequate.

Some Preliminary Results

Uniaxial Compressi6e Test

The failure process of brittle rocks under compressive stress was modeled. In
our numerical test, the number of particle is 25×51, m=1.0, r0=4.0, Kr=1000,
dt=0.01, n=0.2, h=0.6. Ks, Km and E are decided according to equations (2)–(6).
Figure 4 shows the results of a homogeneous, intact sample subjected to increased
uniaxial compressive stress on the top and bottom (s=0.2 t). The black lines mean
that the links between two particles are intact, the grey ones stand for broken but
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Figure 4
The fracture process of a homogeneous sample (all of the rigidity parameters and fracture parameters

are identical) subjected to uniaxial compressive load.

contacting links, and disappearances of lines represent broken links. First, extensive
cracks (r]r0 when broken) appear on the corners, then spread inside. Later, shear
cracks (rBr0 when broken) spread along the diagonals, forming macroscopic
conjugate X-shaped failure patterns with two relative intact pyramidal parts and
two relative fractured parts.

If disorder is introduced, the results may be different. For example, Figure 5
shows the sample with 2% randomly distributed initial defects. By defects, we mean
the bonds are pre-broken but the adjacent particles are still in contact with one
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Figure 5
Brittle cleavage of material sample subjected to uniaxial compressive load, 2% bonds are randomly

broken before loading.

another. In this case, vertical cleavage appears abruptly, then follows collapse of the
sample, which is often observed in brittle rock experiments.

In addition, the dynamic expansion of closed oblique crack is also simulated
(Fig. 6). It is seen that tensile cracks expand from the tips of the oblique crack. The
results are also similar with rock experiments (BRACE, 1960; BRACE and BOMBAL-

AKIS, 1963).

Figure 6
Extension of closed oblique crack under uniaxial pressure, tensile cracks (r]r0 when broken) expand

from the tips of the oblique crack.
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Figure 7
Effects of confining pressure on macroscopic failure modes. Axial stress s1=0.2t, confining pressure
s2=ls1 for tB10 and s2=const for t\10. From left to right, l=0.1, 0.2, 0.4, confining pressure is
increasing, the angles between two groups of shear bands are increasing, and more shear bands can be

seen.

Effects of Confining Pressure

If there is confining pressure, the failure pattern is represented by two groups of
shear bands nearly along two diagonal directions. The effect of confining pressure
on failure patterns is obvious in Figures 7 and 8, with an increase of the confining
pressure, the failure process tends to be more ductile; the strength becomes larger;
there are more shear bands in each group, and the angle between two groups of
main shear bands also increases.

Simulation of Seismicity

Considering that earthquakes in China are mainly intraplate earthquakes, we
used a model different from the earthquake model for transform faults (such as the
San Andreas Fault). In this model (Fig. 9) faults of different sizes are distributed in
random directions and positions; the model is subjected to an increased compressive
load and confining pressure. An earthquake is defined as an event releasing
potential energy, such as the breaking of a single bond or sliding between two
particles, but if the adjacent events occur in successive time steps, these are
considered to be part of a single larger event. The magnitudes are decided according
to the potential energy E released by the broken bonds
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M=c1+c2 log E (12)

where c1 and c2 are constants. In seismology, log E=11.8+1.5 M, so c1=
−7.8667, c2=0.6667. Here we still choose c2=0.6667, c1 is chosen to make the
magnitude of the smallest event be 0. In this way, seismic activity, such as frequency
(Fig. 10), energy release (Fig. 11) and M-t charts (Fig. 12) are gained using this
model.

Some factors that influence b values are discussed. The random precracks are
distributed according to P(l)8cl−g, where c is a constant, representing the density
of cracks, 1 is the length of faults (SCHOLZ and COWIE, 1990), and g\0. b values
are calculated according to the well-known G-R relation. In Figure 13 it is easy to
see that the more cracks there are (the bigger c is), the bigger the b values are,

Figure 8
The simulated axial stress-strain curves with different confining pressure. Curve 1 has no confining
pressure (l=0), brittle fracture is seen, from 2 to 5, l=0.1, 0.2, 0.4, 0.6. With the increase of confining

pressures, the strengths also increase. The fracture processes tend to be more ductile.
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Figure 9
An earthquake model with random cracks. The model is subjected to increased compressive load
s1=0.2 t and confining pressure which increases first and then remains constant (s2=0.2s1 for tB10

and s2=const for t\10).

Figure 10
The variations of frequency (numbers of earthquakes during per unit time) of modeled earthquakes with

time.
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Figure 11
Plot of accumulated energy released by breaking of bonds or sliding between particle pairs, accelerated

releases of energy correspond to bigger earthquakes.

Figure 12
Modeled magnitudes of events and main compressive stress curves. The stress drops correspond to

earthquakes.
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Figure 13
The effect of crack density on b values, with increasing of crack density c, b values (the slope of

log N−M relation) increase.

which is similar to the results of MOGI (1976). In Figure 14 g is also an important
effecting factor. The bigger g is (which means that there are more short faults and
less long faults), the bigger the b values are. In fact, besides the density of faults and
length distribution, there must be other effecting factors, such as inhomogeneous
distribution of strength and elastic constants, which deserves further study.

Numerical Study of Load/Unload Response Ratio Theory

Tidal forces generated by the moon and the sun exert periodic loads and
unloads on the earth’s crust. When the focal region is in a stable state, the responses
to this loading and unloading are approximately equal, however when the focal
region is unstable and near fracture, the responses are quite different. According to
this principal, YIN proposed Load/Unload Response Ratio Theory (LURR, YIN et
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Figure 14
The effect of distribution of length of cracks on b values, with increasing g (there are more short cracks

and less long ones), b values increase.

al., 1995) to judge the imminence of earthquake. This method is successfully applied
for medium-term earthquake prediction (YIN et al., 2000, this issue).

We simulated LURR theory using the model above. The main compressive
stress is increased with a small additional sine-shaped disturbance, which modeled
loading and unloading. LURR values are decided by

LURR=
% 
E+

% 
E−

(13)

where E+ and E− are earthquake energy released during loading and unloading
periods, respectively. Figure 15 presents the results. Figure 16 is an M-t chart
corresponding to Figure 15. It is clearly seen that LURR values fluctuate about
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Figure 15
Simulated variations of Load/Unload Response Ratio (LURR) with time, LURR values fluctuate about
1 when there is no large earthquake or when seismicity is weak, before the largest earthquake

(T=137.05), LURR values rise markedly.

1 when there is no large earthquake or when the seismicity is low, but before
the largest earthquake in the sequence, LURR values rise markedly, which
is similar to real earthquake cases (YIN et al., 2000, this issue). This indi-
cates that LURR is a quantitative parameter to judge the closeness of an earth-
quake.

Conclusion

The preliminary simulations indicate that the model is capable of simulating
rock failure, especially under compressive loads. However when modeling the
earthquake process, our simulations are still coarse, since the number of particles
is very small. Simulations have a narrow range of grain sizes, whereas grain sizes
in the crust have a broad distribution, therefore large scales of simulations are
needed in future work.
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Figure 16
M-t chart corresponding to Figure 15.
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Appendix

In order to make a realistic simulation, the lattice rigidity parameters Kr, Ks, Km

cannot be chosen arbitrarily, but must be chosen according to the elastic parame-
ters of the continuum E and n. We determine these parameters by letting the nodal
displacements of the lattice equal the displacements of corresponding points in the
continuum subjected to specifically chosen strain conditions (so-called patch test,
BATHE and WILSON, 1976).

First, consider the case of uniaxial elongation (Fig. 17). The stresses, strains and
displacements (u, 6) are
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Á
Ã
Í
Ã
Ä

sx=2q

sy=0

t=0

,

Á
Ã
Ã
Í
Ã
Ã
Ä

ox=
2q
E

oy= −
2q6
E

g=0

and

Á
Ã
Í
Ã
Ä

u=
2q
E

x

6= −
2q6
E

y

and the strain energy density is f=2q2/E, where q is a small value such that
ox=2q/E�1, the radial elongation between particles A and B is

DrAB=
&

oAB dlAB=
q

2E
(3−n)r0

where oAB is extension strain in AB direction, r0 equilibrium distance between
two adjacent particles.

DrAC=
q

2E
(3−n)r0

DsAB=DsAC=

3q
2E

(1+n)r0

DrBC=
2q
E

nr0

DsBC=0

where DsAB represents transverse displacement between particles A and B. The
potential energy stored in triangle ABC

Ep=
1
2 [12Kr(DrAB

2 +DrAC
2 +DrBC

2 )+1
2Ks(DsAB

2 +DsAC
2 +DsBC

2 )]=1
2r0


3r0

2
f,

Kr(3n2−2n+3)+Ks(n2+2n+1)=
4
3

3
E. (14)

Figure 17
The lattice and continuum model subjected to uniaxial tensile stress. The nodal displacements of the
lattice equal the displacements of corresponding points in the continuum, subjected to some specifically
chosen strain conditions. Lattice parameters can be decided such that the lattice has realistic elastic

properties.
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In the second case (Fig. 18), the stresses become

Á
Ã
Í
Ã
Ä

sx=0

sy=0

t= −p

where p is a small value such that p/E�1. Similarly, we have

Kr+Ks=
2
3

3
E

1+n
. (15)

From (13) and (14), Kr and Ks can be solved

Kr=

3E

3(1−n)
(16)

Ks=
1−3n

1+n
Kr. (17)

In both cases above, the rigid rotation vz=
1
2((6/(x−(u/(y)=0, Du=0, so Km

is not involved.
In the third case (Fig. 19), the object is subjected to a bending moment:

Á
Ã
Í
Ã
Ä

sx=6hy

sy=0

t=0

and

Á
Ã
Ã
Í
Ã
Ã
Ä

ox=
6h
E

y

oy= −
6hn

E
y

g=0

Figure 18
The lattice and continuum model subjected to shear stress.
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Figure 19
The lattice and continuum model subjected to bending moment.

where h is a small constant such that h/E�1. In this case, the strain energy density
is

f=
18h2

E
y2

and the rigid rotation is vz= −6hx/E, Km is involved in, and the energy caused by
the bending between two particles must be taken into account. Similarly, we can
obtain

Km=

3r0

2E
18

. (18)

Lastly, if the lattices in Figures 17–19 are turned over an arbitrary angle a,
the parameter a does not appear in equations (14)–(18). Hence, such a lattice is
isotropic if Kr, Ks, Km are identical for all particle pairs.
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