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Abstract—In heterogeneous brittle media, the evolution of damage is strongly influenced by the

multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the

damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive

multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of

heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous

medium whose initial shear strength follows the Weibull distribution. Damage is induced through the

application of the Coulomb failure criterion to each element, and the element mesh is refined where the

failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear

increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution

and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which

represents rapid coalescence of damage at the catastrophe transition.

Key words: Heterogeneity, damage evolution, FEM, damage coalescence, catastrophic rupture, stress

redistribution.

1. Introduction

Damage evolution and rupture of disordered heterogeneous brittle media, such

as rocks and the earth’s crust, is a key problem in science, especially in

earthquake simulations (RUNDLE et al., 2000; BEN ZION and SAMMIS, 2003; MORA

et al., 2002). The catastrophe transition occurring in such media is the most

important feature in this problem (BAI et al., 1994; XIA et al., 2002; WEI et al.,

2000). In rock mechanics (JAEGER and COOK, 1979), it is found that at the

beginning of loading, micro-damages appear on mesoscopic heterogeneities. With

increasing load, some disordered weakness at mesoscales may be amplified

strongly due to strong and trans-scale stress redistribution, and become significant
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effects on the global scale. Beyond the catastrophe point, the responses of the

sample, such as damage patterns, energy release, etc., change dramatically with

increasing controlling variable. In other words, the system displays trans-scale

catastrophic transition.

Though material heterogeneity has been examined in a number of models, such as

fiber bundle model (DANIELS, 1945; COLEMAN, 1958; CURTIN, 1997), coupled pattern

mapping model (XIA et al., 2000; WEI et al., 2000), network model etc., the

mechanisms underlying the catastrophic transition through various spatial scales

have not been clearly revealed in computational simulations (CAO et al., 2002).

Therefore, it is of the deepest interest to reveal the characteristic features in the

catastrophe transition and to seek its underlying mechanism.

Recent works in the study of multiscale coupling (BAZANT and CHEN, 1997;

WANG et al., 2004; RONG et al., 2006) suggest that damage evolution and rupture

of solid can be regarded as a trans-scale process in a wide range of spatio-

temporal scales. Traditionally, researchers working on computational simulations

concentrated on bringing practical details into their models, but ignored various

spatial scales inherent in heterogeneous media. To obtain proper resolution of

small-scale damage effects, finite-element meshes consisting of several million

elements are necessary. These often require hours of computation time on even the

latest supercomputer and make the analysis of multiscale damage evolution almost

impossible. This severely limits the usefulness of computation. Although there are

many previous works on the multiscale numerical scheme, such as multilevel

method (FISH and CHEN, 2003) and adaptive VCFEM (GHOSH et al., 2001), most

of them use the asymptotic homogenization and can be quite effective in analyzing

the scale effect, especially in the debonding or crack evolution. However, our

concern is the multiscale effects of damage evolution induced catastrophe of

heterogeneous media. The detailed stress fields are not enough and the coupling

among the micro-damages should be considered to cope with these effects

(KRAUSE and RANK, 2003). Therefore, it is necessary to develop a numerical

model, which can effectively deal with the coupling of medium heterogeneity and

dynamic stress redistribution.

On the other hand, as noted previously that in heterogeneous brittle media, the

micro-damages are usually initiated from small scale at some weak locations. Then,

micro-damages develop from small to large scales via growth and coalescence, and

eventually trigger catastrophe transition. In order to simulate such a phenomena, we

must turn to the adaptive scheme. However, in the standard adaptive finite-element

algorithm, its constitutive relation most often keeps the same in all meshes

(regardless of how large or small), hence it cannot depict heterogeneity properly

(RONG et al., 2005b).

In this paper, a Multiscale adaptive Finite-Element Model (MFEM) is

proposed, and some 2-D problems, both plane stress and plane strain cases, are

simulated with the MFEM. Based on the numerical results, it is found that damage

1848 F. Rong et al. Pure appl. geophys.,



coalescence from mesoscopic to macroscopic scales is crucial in the catastrophe

transition. In particular, the underlying mechanism of catastrophe transition,

namely the coupling between dynamic stress redistribution and disordered

heterogeneity on multiscales, is exposed based on the analysis of the numerical

results.

2. Adaptive Multiscale FEM (MFEM)

Since its origin in the early 1960s, FEM is perhaps the most widely applied

numerical method across the science and engineering fields (ZIENKIEWICZ and

TAYLOR, 1988; JING and HUDSON, 2002). The proposed MFEM is actually a

multilevel and self-adaptive one based on the traditional finite-element model. As

damage accumulates, the dangerous element will be adaptively refined to a smaller

scale. The 4–8 variable nodes serendipity element (KIKUCHI et al., 1999) is adopted to

connect a two-scale effect and the polynomial interpolation functions used in the

model follow C0 continuity (SZABO and BABUSKA, 1991).

2.1 Constitutive Relationship and Damage Criterion

For simplification, a linear elastic constitutive relation is used for intact elements,

i.e.,

e ¼ Er; ð1Þ

where E is the modulus matrix of elements, e and r are the strain and stress tensors,

respectively. For damage occurrence, Coulomb criterion is adopted for brittle crack

(JAEGAR and COOK, 1979):

sMC ¼ sj j � lr � ss; ð2Þ

where sMC is the Coulomb stress of an element, l is the frictional coefficient, s and r
are the shear and normal stresses (compressive stress is defined to be positive) of the

element respectively, and sS is the inherent shear strength. The physical meaning of

this inequality is as follows. If sMC < sS for a particular element, it will remain intact.

Otherwise, it will be refined into four smaller elements. If the criterion is also satisfied

in the smaller element resulting from the mesh refinement, the smaller element will be

further refined into four much smaller elements. This adaptive mesh refinement will

continue until the finest elements. The finest element still has sMC � sS, thus, it will
be considered damaged and can no longer support shear stress on the corresponding

direction.

The material heterogeneity is introduced by Weibull distribution of sS:

hðsSÞ ¼ m
sm�1

S

gm

� �
exp � sS

g

� �m� �
; ð3Þ
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where m and g are the Weibull modulus and scale parameter, respectively. Therefore,

each finest element has a given ss, according to Equation (2). On the other hand,

corresponding spatial distribution in a specimen is assumed to be random. Moreover,

for a coarse element, ss is supposed to be the average of four smaller elements with ss
in it. The frictional coefficient l and the scale parameter g are assumed identical for

all elements in the simulations.

Actually, Equation (2) can be satisfied on three different directions within an

element (Fig. 1a). In order to simplify the simulation, the response of an element

beyond the criterion of (2) is assumed to follow a modified smeared crack model

(BAZANT and CHEN, 1997; RONG et al., 2005b) to simulate the post-damage effect.

That is, if an element has become damaged and the stress normal to the damage is

tension, the failed element is described by a reduced elastic modulus E (Equation (4),

R is taken to be 103 in the simulation). However, if the normal stress is compressive,

i.e., rn is positive, here n is the normal to damage, see Figure 1(a), the elastic modulus

will remain to be the initial one E0 (Equation 4).
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z
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n

t
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t

t

n

(1)                                                (2)                                                (3) 
(a)

 (b) 

Figure 1

(a) Possible three-dimensional orientation of damage in elements, n and t is the normal direction and the

tangential direction of damage direction, respectively. (b) Simplified diagram of the FEMmodel, indicating

boundary conditions.
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E ¼ E0=R rn < 0
E0 rn � 0

�
; ð4Þ

where E is the Young’s modulus in modulus matrix of elements, E0 is the initial

Young’s modulus, R is the reduction ratio and rn is the stress normal to the

damage. Poisson’s ratio in the damaged elements is assumed to be identical to the

intact one in the simulation. Hence there might be three different damage states in

an element and each one will result in a reduction of Young’s modulus in

corresponding damage directions. If an element cracked on a direction, the

damage fraction (defined on the element) is assumed to increase 1/3, and only

the element has cracks on all three orientations. The mechanical response of the

element will be depicted with a total reduced stiffness matrix. Correspondingly, the

element should be regarded as a partially damaged element or fully damaged one

depending on how many directions are damaged. More details of the discussion

on various partially damaged states are available in RONG et al. (2005). In fact,

experimental results (PATERSON, 1978) of uniaxial stress in rock mechanics

demonstrate that the main crack (plane of failure) occurs on a plane that is

inclined to the loading direction. This corresponds to orientations shown in

Figure 1a(1) or (3).

The system of Equations (1–4) forms the basic constitutive formation of MFEM

in the simulation.

2.2 Case Studies with MFEM

As described in Section 2.1, we examine two-dimensional (2-D) cases: plane stress

and plane strain. Note that although the problems are 2-D, damage can form in three

different directions according to the nature of the Coulomb criterion.

The boundary conditions used in the simulations are as follows: compressive

axial load is acted on upper-surface while the lower surface is fixed, as shown in

Figure 1b. The controlling variable in calculations is the upper-surface boundary

displacement, namely the displacement increment is applied step by step on the

upper surface until the failure of the sample. By solving minimum energy, we let

force field reach equilibrium. Note that this equilibrium state of force field does not

mean the equilibrium of damage due to the stress redistribution. Thus in one step,

the load is held until no more elements become damaged due to stress

redistribution.

Hence, in the simulation, the quasi-static loading mode is used. This implies

tP � tD � tex; ð5Þ

where tP is the characteristic time for stress to reach equilibrium, tD is the

characteristic time for damage to nucleate and tex is the characteristic external

loading time. The relationship in (5) implies that the stress field will equilibrate much

faster than damage forms. Additionally, damage nucleates faster than the change of

Vol. 163, 2006 Catastrophic Rupture Induced Damage Coalescence 1851



the external force. These effectively reduce our problems to be a quasi-static one.

Therefore, the simulation is effectively a time series of FEM solutions to the elasto-

static problem.

Additionally, as a case study, the following parameters (JAEGER and COOK, 1979

and XU et al., 2004) are used in the simulations:

Young’s modulus E0 ¼ 47:2� 109 Pa;

Poisson Ratio m ¼ 0:250;

Frictional coefficient l ¼ 0:639;

Weibull modulus and scale parameter m ¼ 3 and g ¼ 3:10� 105 Pa:

Figure 3

Damage evolution patterns of lane stress case. The labels (A-E, also marked on the r-e curve) denote the
quasi-static loading steps 2, 202, 502, 531 and 532, respectively. In the patterns, there are three kinds of

darkness; black indicates fully damaged, gray indicates partially damaged, and white is still intact.

c

create the coarse grids

set the heterogeneity
parameter(following the given

distribution function)

add initial load and compute the stiffness matrix;

solve FEM equations and determine the
first step loading which can make at least

one element break or begin refinement

refine the dangerous element

add the new determined loading

compute the new stiffness matrix and
solve the FEM equation

dangerous element is the
elementary element

set the dangerous element to be
broken

compute the new stiffness matrix
with the new modulus and solve

the FEM equation

stress state on the damage
direction of damaged

element is compression

switch that element to intact state

determine next step loading which can
make at least one element break

damage ratio is  greater
than the given amount

Stop

Y

Y

Y
N

N

N

Figure 2

Flow chart of MFEM.
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In the end, for the sake of clarification of the algorithm, the flow chart of MFEM

is presented in Figure 2.

3. Damage Evolution and Catastrophe Transition

We examined 2-D problems of plane stress and plane strain using the MFEM. To

simulate initial heterogeneity, 15 different spatially random distributions of material

strength, following a Weibull distribution, are given over the FEM finest scale

elements. This produces different patterns of the inherent shear strength while

maintaining the identical probability distribution among the 15 samples. We use the

results from both plane stress and plane strain cases to analyze the physical processes

that govern the catastrophe transition.

All 15 samples demonstrate a similar evolution trend, namely nonlinear

deformation with random damage at an early stage and an abrupt catastrophe

transition with trans-scale coalescence. A representative damage evolution pattern

for the plane stress case is shown in Figure 3. The central diagram is the curve of

nominal stress versus nominal strain in the entire process. At the initial stage, damage

appears to be relatively uniform (step 202). The damage occurred at the elements

with the lower shear strength in the strength distribution; see Figure 3B and we will

discuss this issue in detail later. With increasing loading, more and more elements

satisfy Equation (2) and become damaged. This is called damage accumulation; see B

and C in Figure 3. Then, more damage clusters are formed (C and D in Fig. 3) but

the whole sample still remains stable. Finally, a catastrophic rupture happens at step

532 (from D to E in Fig. 3).

Similarly, a typical damage evolution pattern for plane strain is shown in

Figure 4. Although the detail of heterogeneity in this case is identical to that of the

previous plane stress case, the final spatial damage pattern is quite different (compare

Figs. 3E and 4E). The mean of catastrophe strain in 15 plane stress cases is

6.04 · 10)3, while that of 15 plane strain cases is 7.95 · 10)3. The comparison shows

that the strain at the catastrophe transition for the plane strain case seems to be

greater than that of plane stress, although these two have the identical initial spatial

pattern of the inherent shear strength.

Hence, understanding the factors that contribute to these differences is an

important part of understanding the catastrophe transition and the process of

material failure.

Figure 4

Damage evolution patterns of plane strain case. The labels (A-E, also marked on the r-e curve) denote the
quasi-static loading steps 2, 250, 500, 648 and 649, respectively. In the patterns, for each square element,

there are three kinds of darkness; black indicates fully damaged element, gray indicates partially damaged,

and white still remains intact.

c
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4. Trans-scale Damage Coalescence

It has been suggested that catastrophic rupture can mainly be attributed to

trans-scale damage coalescence from mesoscopic to macroscopic, and eventually, to

global scales (WANG et al., 2004). Figure 5 shows the nonequilibrium formation of

the largest damage cluster during the catastrophic rupture in the plane stress case,

i.e., from D (step 531) to E (step 532) in Figure 3. As described before, during

stable damage accumulation, both stress and damage reach equilibrium in each

step. However, during this catastrophic transition, we should calculate a number of

substeps to reveal the trans-scale coalescence. The so-called substeps stand for the

procedure, in which even though stress reaches equilibrium, damage still evolves

(a) Substep 1 (b) Substep 26

(c) Substep 27 (d) Substep 33

Figure 5

The damage coalescence of the plane stress case during the catastrophic transition. In the pattern there are

three kinds of elements with different chroma; black indicates the damaged elements forming the largest

damage cluster, gray indicates damaged elements elsewhere, and white elements are still intact.

1856 F. Rong et al. Pure appl. geophys.,



and violates the current equilibrium stress state, and then continue on until

complete failure. Figure 5 shows the trans-scale damage coalescence of collectively

33 substeps during this non equilibrium catastrophic transition. Moreover, the

growth of the cluster in the catastrophe transition is far different from a crack

propagation, namely the largest cluster is sometimes formed with the connection of

two neighboring ones (for example see (b) and (c) in Figure 5).

Similarly, the nonequilibrium formation of the largest damage cluster during

the catastrophic rupture in the plane strain case is given in Figure 6. The growth of

the largest damage cluster in the plane stress and plane strain cases is shown in

Figures 7 and 8, respectively. In these two figures (7 and 8), we define the

characteristic ratio as the ratio between the widths of the damage cluster to the

width of the sample. When the characteristic ratio becomes greater than 0.1, we can

(a) Substep 1 (b) Substep 26

(c) Substep 27 (d) Substep 33

Figure 6

The damage coalescence of the plane strain case during the catastrophic transition. In the pattern, there are

three kinds of elements with different chroma; black indicates the damaged elements forming the largest

damage cluster, gray indicates damaged elements elsewhere, and white elements are still intact.
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see from Figures 5 and 6 that the damage cluster becomes marginal to the

catastrophe transition of the entire specimen. Resultingly the largest damage cluster

grows as a trans-scale, inverse cascade of damage from small scale to large scale,

and eventually to global scale.

The statistics of the growth of the largest cluster for samples are shown in Figures

9 and 10 for the plane stress and plane strain cases, respectively. Although there is

variation in the two different stress states, inverse cascade of damage manifests a

common feature of catastrophe transition.

5. Underlying Mechanism of Catastrophe

The coalescence of damage which leads to failure is affected by the coupling of

nonlinear stress redistribution and heterogeneity. An examination of the evolution

of the stress redistribution distance (defined as the distance between newly damaged

elements and neighboring elements where the Coulomb stress (sMC in Equation 2)

increases during a specific substep) reveals that the increase in damage results in a

concomitant increase in stress and the stress redistribution distance. Figure 11
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Figure 7

(a) The evolution of the span of the largest damage cluster in the whole damage evolution (from step 0 to

step 532) in the plane stress case. (b) The detailed evolution within step 502, and (c) the evolution during

eventual catastrophic rupture. The dashed lines stand for the characteristic ratios between the width of the

largest damage cluste (L) and the width of the sample (L0).
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eventual catastrophic rupture. The dashed lines stand for the characteristic ratios between the width of the
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Figure 9

Inverse cascade in the catastrophe transition of the plane stress cases. Fifteen samples were used to

calculate the average and the error bars.
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shows the stress increase and redistribution distance for the plane stress case.

During the early stage of damage accumulation (Fig. 11a), higher stress increment

is confined to the elements closer to the damaged elements. As damage

accumulates, the stress increment increases and distant elements begin to be

affected in addition to those closer to the damaged elements (Fig. 11b). Now,

obvious stress redistribution is not only seen near the damaged elements, but also

farther away. This phenomenon has a significant effect on the final catastrophic

rupture. At the point of catastrophic rupture, elements both proximal and distal to

the previously damaged elements experience extreme increases in stress redistribu-

tion, indicating complete failure (Fig. 11c). As stress increases, elements with higher

strength will be damaged more. This results in a positive feedback mechanism, i.e.,

stress, damage, and stress redistribution distance become coupled with each other

strongly, leading to damage formation at even greater distances. Ultimately, the

strong stress fluctuations lead to a breakdown of mean field approximation (ZHANG

et al., 2004).

Similar statistics on stress redistribution distance and stress increment in the

plane strain case are given in Figure 12. There are also differences in the stress

redistribution distance between the plane stress and plane strain cases (Figs. 11 and

12), which make the final damage pattern quite different. Comparing Figures 11(c)

and 12(c), the element count reveals that the number of elements where Coulomb

stress increases in the plane stain case is greater than that of the plane stress case.

And the stress redistribution distance in the plane strain case is lower than that of

the plane stress. This statistical result is quite reasonable due to the more
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Inverse cascade in the catastrophe transition of the plane strain cases. Fifteen samples were used to

calculate the average and the error bars.
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constrained boundary condition in the plane strain case. The different stress

redistribution should be the other reasons, which result in the difference in failure

pattern in the two cases.

The coupling of heterogeneity with stress redistribution strongly affects the

trans-scale inverse cascade of damage evolution. A comparison of the initial

distribution representing the heterogeneity and the counts of the damaged

elements at different stages of damage evolution show this coupling effect more

clearly (Figs. 13 and 14). In order to clarify this effect even more clearly, let us

make a comparison with the mean field approximation. The initial heterogeneity

in shear strength is Weibull distribution. Based on mean field approximation

(ZHANG et al., 2004), i.e., all elements have the same stress state, all elements with

shear strength below the current Coulomb stress will become damaged, see

Figure 13(a). However, in the simulations, some elements with higher shear

strength are also damaged due to higher stress resulting from the coupling

Figure 11

Stress redistribution distance distribution of the plane stress case. Stress increment means the increment of

Coulomb stress in elements, redistribution distance indicates the distance between the newly damaged

element and the neighboring elements where Coulomb stress increased, and count is the number of

elements where the Coulomb stress increased elements. d0 is the length of finest elements. (a) The early

stage of damage accumulation, (b) the later stage of damage accumulation, (c) the catastrophic rupture.
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between heterogeneity and stress redistribution, whereas some elements with low

shear strength remain intact, as shown in Figures 13(b) and 14(a). Although initial

Weibull distribution remains the same in plane stress and strain cases, both final

catastrophic patterns (Figs. 3 and 4) and the statistics of damaged elements are

different (Figs. 13(c) and 14(b)). All these differ from the global mean field

approximation and this clearly demonstrates that the mechanism underlying the

catastrophe transition is the coupling between dynamical stress distribution and

disordered heterogeneity.

6. Summary

We use an adaptive multiscale finite-element model (MFEM) to simulate the

damage evolution and the catastrophic failure of heterogeneous brittle media. The

linear elastic constitutive relationship is used for intact elements. Damage is

introduced with Coulomb failure criterion to each element and the heterogeneity is

depicted by Weibull distribution of inherent shear strength in Coulomb criterion and

Figure 12

Stress redistribution distance distribution of the plane strain case. d0 is the length of finest elements. (a) The

early stage of damage accumulation, (b) the later stage of damage accumulation, (c) the catastrophic

rupture.
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random spatial distribution. Large elements should be refined, once the failure

criterion is met in them. While the finest elements satisfied the criterion, it will

become damaged on three possible orientations where the criterion is satisfied.

Consequently, there may be multiple damage in a finest element until complete

failure. In order to better understand this catastrophic rupture, a detailed

investigation of the damage evolution is carried out, with particular attention to

the catastrophe transition. Both plane stress and plane strain cases were investigated.

We found that as damage accumulates, there is a strong nonlinear increase in stress

and the stress redistribution distance. This is an indication of the mechanism

underlying catastrophe transition. The coupling of the dynamic stress redistribution

and the material heterogeneity at different scales results in an inverse cascade of

damage clusters, which represents the rapid coalescence of damage at catastrophe

transition. Therefore, we conclude that the mechanism underlying the catastrophe

transition is the coupling between stress redistribution and disordered heterogeneity.
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Initial Weibull distribution of shear strength and the counts of damaged elements (the area under

corresponding curves) in a plane stress case (a) mean field theory, the area between the Weibull distribution

and the vertical dashed line is the total of damaged elements (shaded). (b) The counts for different steps. (c)

The counts of zoomed substeps during catastrophic rupture.
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