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Abstract. In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model
was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-
specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic
conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution
according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be pre-
dicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure
probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC)
modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the
vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in
damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary
failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and
macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be
assumed as a precursor of evolution-induced catastrophe (EIC).
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1. Introduction

Material failure is a problem of scientific and technological importance and has been intens-
ively studied for a long time. However, some fundamental questions still require answering
because of the incredible complexity. This complexity comes mainly from the following
intrinsic features:
1. Material failure usually results from a nonlinear evolution far from equilibrium.
2. Multi-scale inhomogeneities, especially the collective effects of disordered inhomogen-

eities on the meso-scopic scale, play a fundamental role in material failure.
This complexity of failure has been noticed by a number of researchers, for example, by
Sahimi and Arbabi [1], who wrote:
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In real engineering materials, and in natural rocks, the presence of a large number of
flaws with various sizes, shapes, and orientations makes the problem far more complex.
Disorder comes into play in many ways during a fracture process. Even small, initially
present disorder can be enormously amplified during fracture. This makes fracture a col-
lective phenomenon in which disorder plays a fundamental role. In fact, due to disorder
brittle materials generally exhibit large statistical fluctuations in fracture strengths, when
nominally identical samples are tested under identical loading. Because of these stat-
istical fluctuations, it is insufficient, and indeed inappropriate, to represent the fracture
behavior of a disordered material by only itsaverageproperties, an idea which is usually
used in mean-field approaches: Fluctuations are important and must not be neglected.

In order to clarify the complexity of failure, several lattice or network [1–7], and chain
models [8–12] have been developed. A very helpful reference book by Herrmann and Roux
[13] summarizes the relevant works until 1990. Various aspects of material failure have been
investigated and discussed, such as critical damage fraction, scaling laws, etc.

Among these aspects, one interesting feature has been preliminarily reported which can be
sketched by a model called evolution-induced catastrophe (EIC) [4]. The EIC model shows
sample-specific behavior, i.e. the macroscopic failure may present very different behavior,
sample-to-sample, under the same macroscopic conditions [5]. For instance, it shows a great
diversity of EIC thresholds for samples under the same governing macroscopic parameters
[12]. There is no direct and simple link between macroscopic and microscopic phenomena for
systems far from equilibrium. Moreover, there are rich meso-scopic phenomena which play
important roles in material failure. The underlying mechanism of sample-specificity is that
the differentiation due to meso-scopic disorder may be strongly amplified during nonlinear
evolution from damage accumulation to failure and lead to significantly different macroscopic
effects [14].

In most of the previous works, the number of samples is usually limited in comparison
with the total number of states in phase space. However, material failure cannot be simply
attributed to an equilibrium phase transition, and is severely dependent on microstructures
of materials. So, a few examples of computational tests of failure are not enough to draw
adequate statistical information. It would be much better to examine the damage evolution to
failure by using statistical mechanics, i.e. to examine the evolution of a statistical ensemble.

Ensemble analysis is used to examine the dynamics of a large number of samples. As a
first step, it is better to consider simple models with nonlinear dynamics and disorder, for
instance, a one-dimensional model. Generally, such a kind of simple model can qualitatively
exhibit some important universal behaviors qualitatively. Of course, as the next step, one has
to examine the ensemble evolution for two or three-dimensional models to obtain quantitative
and more realistic knowledge. Actually, in engineering, one-dimensional fiber models were
successfully assumed in the study of composites and proved to be effective (see, for example,
[8]).

A preliminary ensemble analysis has been made for short chains based on the examination
of all the states in phase space [11]. Obviously, it will become impossible to use this method
for long chains owing to the explosively increasing computational complexity. In addition,
the commonly used random sampling method cannot reveal the structure of phase space. As
we can see later, the structure is extremely important for the study of trans-scale sensitivity.
For this sake, a stochastic but interrelated sampling method, called the slice sampling method,
is proposed and briefly reported in a short communication [12]. In this paper, a long, one-
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Figure 1. A sketch of a one-dimensional chain model (N = 20).

dimensional periodical chain model is adopted as a meso-scopic nonlinear dynamics model of
material failure. The slice sampling method is used to study the statistical ensemble evolution.
In order to understand the distribution of strength, different from previous works [12, 15],
we examined the sample-specific behavior in the binary space of initial damage fractionp0

and nominal stressσ0, instead ofp0 only. In this way, we intend to perform a comprehensive
and qualitative study of failure and to draw some reliable statistical conclusions on its non-
equilibrium essence in disordered materials. Another aim is to find the precursor of failure.
These results may be informative for the study brittle failure, like earthquakes, failure of
ceramics, etc.

Section 2 gives a brief review of the periodical chain model and slice sampling method.
Then, the dynamics of damage evolution and failure probability are introduced in Section 3.
Section 4 deals with the sample-specific behavior of failure, the binary failure probability, and
the scaling law of size effect. Section 5 considers the diversity of material strength and presents
a further discussion on sample-specific behavior. Section 6 examines stress fluctuations in the
evolution of EIC modes and the precursor of catastrophe. In Section 7, the sensitive zone in
phase space and the statistical description of trans-scales sensitivity are examined. Section 8
is a conclusion.

2. Brief Review of Periodical Chain Model and Slice Sampling Method

In this section we briefly review the periodical chain model [15] and the slice sampling method
[12]. Suppose a chain withN sites resembling a bundle of parallel fibers subjected to a tensile
load along the fibers, see Figure 1. Such a periodical chain is also called a ring lattice. There
are two options in each site,xi = 0 andxi = 1, denoting intact and broken sites, respectively.
The meso-scopic damage pattern is denoted byX = (xi; i = 1,2, . . . , N). On the other hand,
the macroscopic state of the system can be expressed by a parameterp

p = n

N
=

N∑
i=1

xi

N
, (1)
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Figure 2. A sketch showing the correspondence between a point on a slice and the damage pattern of a chain
(N = 20). . . . iso-p-set diagonals, —•— the boundary between GS and EIC based on rule (IV), —- the boundary
between GS and EIC based on rule (I).

wherep is the damage fraction andn is the total number of broken sites in the chain. The
usual approach to the description of all possible damage patterns is to introduce a phase
space. A phase point represents the meso-scopic damage pattern of the chain. In terms of
the Möbius function and Möbius inversion in number theory, the total number of phase points
in phase space, i.e. the total number of possible damage patterns in the chain�N can be
exactly calculated [15].�N rapidly increases with increasingN . For example,�N = 52488
for N = 20,�N ≈ 8.03× 1057 for N = 200 and�N ≈ 5.74× 10598 for N = 2000. So,
it is clearly impossible to calculate the evolutions of all damage patterns for chains with long
periods. To solve the problem, we introduced the slice sampling method [12].

Slices are stochastic two-dimensional sections through phase space, but with interrelated
phase points on the slices [16]. Take a two-dimensional coordinate(α, β), where(α andβ are
integers and 0≤ α ≤ N1 and 0≤ β ≤ N − N1 (N1 is an arbitrary integer 1≤ N1 ≤ N). Let
α andβ randomly correspond to the individualN sites of the chain (see Figure 2). At a phase
point (α1, β1), all sites corresponding toα ≤ α1 andβ ≤ β1 are broken, whereasα > α1 and
β > β1 are intact. Then, a diagonal of the coordinates

α + β = pN (2)

is an iso-p-set, i.e. the damage patterns with the same damage fractionp. Then, the Hamming
distance between the two states(α1, β1) and(α2, β2) on a slice is given by

H =
N∑
i=1

|x1
i − x2

i | = |α1− α2| + |β1 − β2|. (3)
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So, the states with a shorter Hamming distanceH on the slice are closer to each other and all
states on the slice are interrelated.

By taking the states on a number of slices as the initial states, we can examine the ensemble
evolution of the chain under a given nominal stressσ0 and a certain load-sharing rule.

3. Dynamics of Damage Evolution and Failure Probability

Now, let us turn to the meso-scopic dynamics of the chain (see Figure 1). The nominal stress
σ0 acting on the chain can be regarded as one of the macroscopic parameters. For simplicity,
the strengthσc of the site is assumed to be the same for all the sites. When the stressσ of a
site becomes equal to or greater than the strengthσc,

σ ≥ σc, (4)

that site will become broken. For a given nominal stressσ0, the load supported by originally
intact but now, due to damage evolution, broken sites is shared by the remaining intact sites.
Based on a certain load-sharing rule, the evolution of a damage pattern follows deterministic
and irreversible nonlinear dynamics. So, the pattern evolution is determined by the initial
pattern, load sharing rule, and macroscopic parameterσ0/σc. According to the final state,
evolution modes can be divided into two classes: globally stable (GS) modes and evolution-
induced catastrophic (EIC) modes. The ending of the EIC modes is the complete failure state
(p = 1), whereas the GS modes do not fail and remain globally stable. Obviously, the division
of the evolution modes into GS and EIC modes gives an important macroscopic description
of the behavior of the system.

In order to cover different types of stress redistribution, we consider the following load-
sharing rules (see Figure 3):

(I) Globally mean field rule. The stress is always uniformly shared by all intact sites, i.e., for
a chain with damage fractionp, the stressσ is given by

σ = σ0

1− p . (5)

The globally mean field model gives the simplest load-sharing rule without stress fluctuations.
The macroscopic strengthσf of a sample with initial damage fractionp0 can then be derived
from Equation (5) as

σf = (1− p0)σc. (6)

In addition, for a sample under a given nominal stressσ0, the failure threshold of damage
fractionpc is given by

pc = 1− σ0

σc
. (7)

Equations (6) and (7) indicate that the failure threshold can be determined uniquely by mac-
roscopic parameters(σ0, σc) or (p0, σc), and then there is a clear-cut boundary between GS
and EIC.
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Figure 3. A sketch of four load-sharing rules (N = 20).

(II) Stress concentration rule. The nominal stress of a broken cluster will be shared by its two
neighboring intact sites.

(III) Influence region rule. There are influence regions on the two sides of a broken cluster,
their sizes are proportional to the size of the broken cluster, with a proportional coefficientk.
The nominal stress of a broken cluster is shared equally and uniformly by its two influence
regions. Once the influence regions of two broken clusters overlap each other, take the mean
value to be the stress.

(IV) Cluster load-sharing rule [12]. The nominal stress of a broken cluster is uniformly shared
by its two neighboring intact clusters, i.e., a site in ans-intact cluster separating anl- and
r-broken cluster supports a stress

σ =
(

1+ l + r
2s

)
σ0. (8)

Then, the corresponding site-breaking condition (4) can be expressed by

L = 2s

l + r ≤
σ0

σc − σ0
= Lc, (9)
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whereL andLc are the dimensionless and critical dimensionless ligaments, respectively.
According to load-sharing rules (II), (III) or (IV), random stress fluctuations can always

occur owing to the random distribution of the broken sites, i.e., owing to the meso-scopic
disorder. The stress pattern, determined by damage patternX, governs the evolution of the
damage pattern and evolves with the damage pattern too. So, in these cases, the evolution
mode of a system cannot be uniquely determined by macroscopic parameters (damage fraction
p and nominal stressσ0). It is always dependent on the details of the patternX = {xi}, i.e., on
the meso-scopic damage pattern. In other words, the system shows sample-specific behavior.
Macroscopically, one has to turn to a statistical description.

Now, let us consider an ensemble of samples with the same initial damage fractionp0 and
assume that all the possible damage patterns have the same initial probability. Then, one can
examine the ensemble evolution under a given nominal stressσ0. Especially, one can obtain
the probability of the EIC modes, i.e., the failure probability8N(p0, σ0), where the subscript
N is the period of the chain.8N(p0, σ0) gives the most important information about the
ensemble evolution to failure. An examination of the evolution of the all-over phase points in
phase space has been carried out for the cases of short chains withN = 20 and the outcome is
shown in Figure 4. One can see that the damage evolutions under rules (II), (III) and (IV) show
transitional regions (0< 8N < 1) but rule (I) does not. This means that there is coexistence
between GS and EIC modes for given macroscopicp0 andσ0. This indicates the complexity
of failure, while the mean field model discards the coexistence and is no longer helpful in the
issue of failure complexity.

Furthermore, for most cases following rules (II) and (III), the largest initially-broken
cluster, independent of all other broken clusters, is usually the most dangerous meso-scopic
one. This is due to the fact that the stress concentration at the tip of the broken cluster is
irrelevant to other broken clusters, except for the overlapping region in rule (III). In this sense,
the failure governed by rules (II) and (III) is still deterministically predictable according to
a local criterion for the initial damage pattern, though sample specific. This is what fracture
mechanics deal with [17, 18]. So, we shall skip these in this paper.

Finally, rule (IV) reflects the interaction between broken clusters and the evolution depends
on the collective effects of the pattern. Under rule (VI), the failure is truly sample-specific and
cannot be predicted according to a simple criterion for an initial damage pattern. This is what
the nonlinear damage evolution of failure should focus on.

4. Sample-Specific Behavior and Binary Failure Probability

As we have pointed out, the coexistence of GS and EIC modes, i.e. the transitional region of
failure probability8N , indicates the sample-specificity and failure complexity. From the angle
of meso-scopic damage patterns, this is actually due to the sensitivity of failure to some subtle
details of meso-scopic damage patterns, although these patterns have the same macroscopic
parametersp0 and σ0. In order to reveal the essence of the sample-specific behavior, we
must examine large samples. Obviously, the approach to examining all-over phase space is no
longer effective for long period chains. We must seek the help of the slice sampling method.

In [12], we have calibrated the method by comparing the results with the exact results
obtained by the calculation of the all-over phase points for short chains (N = 20 and 30). Here
we discuss further the statistical variation of the slice sampling method. For short chains, we
can use the exact results obtained from all phase points as the true values. Then, a comparison
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Figure 4. The exact solution of failure probability8N under a given nominal stress (σ0/σc = 0.5) for different
load-sharing rules,N = 20, — rule (I),♦ rule (II),© rule (III) (k = 0.6),2 rule (IV).

between the results obtained by slice sampling and the true values gives the relative errors.
It is found that the errors decrease with the increasing number of slicesM. For example,
for the chain withN = 30, the relative errors of failure probability8 (at p0 = 0.3 and
σ0/σc = 0.5, rule (IV)) are 0.04 for 2000 slices, 0.02 for 10000 slices and 0.0008 for 50000
slices, respectively.

It is impossible to calculate the true values for long chains and then the errors. But by com-
paring the results from a large number of slices, we can calculate their statistical deviation by
taking their mean as approximately the true value. It is found that the deviation decreases with
an increasing amount of slices. Figure 5 shows the relative deviations18/8̄ as a function of
the amount of slicesM (N = 100,p0 = 0.2, σ0/σc = 0.5). It is clear that18/8̄ decreases
with M, and18/8̄ < 0.01 whenM > 20000, like the errors for short chains.

So the statistical errors and deviations of the slice sampling method decrease with an in-
creasing number of slices. The required precision can be attained by taking sufficient number
of slices, for instance, roughly speaking,(1∼2)×104 slices can give a satisfactory calculation
(with (1∼2)% of error or deviation) of the failure probability8 in practice.

We have briefly reported two features of sample-specific behavior [12]. The first is that the
boundary between GS and EIC based on rule (IV) does not coincide with any iso-p-set line
(see Figure 2), whereas the mean field theory does. The second are scaling laws of the central
position
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Figure 5. Statistical deviation of the slice sampling method18/8̄, N = 100,p0 = 0.2, σ0/σc = 0.5, rule (IV).

pt =
1∫

0

p0
∂8N

∂p0
dp0 (10)

and the effective width

1 =
 1∫

0

(p0− pt)2∂8N

∂p0
dp0

1/2

(11)

of the transition region, respectively. Approximately, the scaling laws arept = aN−α and
1 = bN−β , respectively. The exponentsα = 0.2199,β = 0.2205 and the coefficientsa =
0.5454 andb = 0.1038 approximately, forLc = 1.0 in the range ofN ∼ (101–103). The
size span between macroscopic failure (centimeter to meter, typically) and the meso-scopic
structure (micrometer, typically) is in the order of 104 to 106 for a realistic failure of materials.
According to the above scaling laws,1/pt = 0.1900 forN = 10, 1/pt = 0.1687 for
N = 106 [12]. So, sample-specific behavior needs to be taken into account in practical failure.

More importantly, we found that a complete statistical description of sample-specific be-
havior should be given in two-dimensional parameter spacep0, σ0, wherep0 is the initial
damage fraction andσ0 is the nominal stress. They are regarded as two macroscopic-governing
parameters of a periodical chain. The most important statistical distribution is the binary fail-
ure probability8N(p0, σ0), instead of the previous8N(p0) [12]. Figure 6 shows8N(p0, σ0)

for N = 100 and rule (IV). From Figure 6, one can see that there is a two-dimensional
transitional region , where 0< 8N < 1, in parameter space{p0, σ0}. In this region, GS
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Figure 6. Failure probability8N(p0, σ0), for N = 100 and rule (IV).

and EIC modes coexist and macroscopic behavior of a system cannot be determined by its
macroscopic parameters only.

From probability8N(p0, σ0), one can calculatept and1/pt as functions ofσ0/σc ac-
cording to Equations (10) and (11). Figure 7 shows these functions for chains withN = 100
and rule (IV). Significantly, over the whole range of 0.05≤ σ0/σc ≤ 0.95, the relative width
of transitional region1/pt , is almost always equal to or greater than the order of 10−1 (see
Figure 7). This implies that the existence of a transitional region should be taken into account
almost always throughout the whole range of nominal stress.

5. Diversity of Macroscopic Strength

One of the most important indications of sample-specific behavior in realistic material fail-
ure is that materials generally exhibit large statistical fluctuations in failure strengths under
identical macroscopic conditions. Researchers have introduced various empirical statistical
distributions of strengths to represent the failure behavior (such as the Weibull distribution).

Obviously, failure probability8N(p0, σ0) as a function ofσ0 for a givenp0 gives the
cumulative distribution of the failure strength. So the distribution of the failure strength should
be derived from8N(p0, σ0) by differentiationW = ∂8N/∂σ0. From Equation (6), we have
seen that, for the globally mean field rule, the failure probability8 is a step function and the
distribution of strength is aδ-function. The failure probability of a chain with finiteN exhibits
a number of jumps in transitional regions because of the stress fluctuations and finite chain
size. This causes great difficulties in the calculation of strength distribution. Then, instead, the
distribution of failure strength has to be calculated by difference as
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(a)

(b)

Figure 7. pt and1 as functions ofσ0/σc for N = 100 and rule (IV): (a)pt vs.σ0/σc, (b)1/pt vs.σ0/σc.
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W(σf , p0, N) ≈ 8N(p0, σf +1σf )−8N(p0, σf )

1σf
, (12)

where1σf is a small but finite increment of strengthσf .
Figure 8 gives an example of the probability distribution of failure strengthW (N = 600,

p0 = 0.2, rule (IV)). Here the statistical deviation of slice sampling is18/8̄ ∼ 0.01 for slice
amountM = 50000 (atσ0/σc = 0.4). Firstly,8N is calculated from 105 slices, see Figure 8a.
The data of8N are also fitted by a smooth curve 1− exp(−bσmf ) (Weibull distribution) with
m = 12.61 andb = 10.226. The standard deviation between the data and the smooth curve is
about 0.06, mainly because of the jumps in the data. Figure 8b shows the strength distribution
W calculated from the failure probability. The smooth curve is derived from the smooth fitting
Weibull distribution in Figure 8a by differentiation. The discrete data demonstrate the results
obtained by direct difference of8N .

The average strength of a chain with periodN and initial damage fractionp0 is defined by

σ̄f (N, p0) =
∞∫

0

σfW(σf , p0, N)dσf (13)

and the effective width of the strength distribution is defined as

1σf (N, p0) =
 ∞∫

0

(σf − σ̄f )2W(σf , p0, N)dσf

1/2

(14)

by making use of strength distributionW (Equation (12)). Figure 9 shows an example ofσ̄f /σc
and1σf /σf as functions ofp0 (N = 100, slice amountM = 20000, and the statistical error
is less than 0.01, see Figure 5).1σf is a measurement of the diversity of failure strengths.
From Figure 9b, one can see that1σf /σ̄f > 10−1 over a wide range ofp0.

There is an approximate scaling law in the range of (20≤ N ≤ 2000) as

1σf /σf = gN−γ . (15)

For p0 = 0.2, γ = 0.06 andg = 0.132. As the results shown in Figure 9,σf and1σf
are calculated by using Equations (13) and (14), respectively, and the strength distributionW

is directly calculated from8N according to Equation (12) by difference. So the precision of
1σf /σ̄f is dominated by the precision of8N . As mentioned before, the statistical deviation
of 8N is estimated as about 1% (whenM ≥ 5× 104). The relative deviation of the fitting
scaling law (15) is about 10%.

Now, it is still an unbearably time-consuming calculation, even for larger chains withN >

2× 103. So we extrapolate the obtained scaling law (15) to a large sizeN = 102–106 to have
a look of the behavior of1σf /σ̄f . From the extrapolation,1σf /σ̄f decreases from 0.11 to
0.058± 0.005. Such a relative deviation of strength indicates the existence of the strength
diversity in the size span 102 ≤ N ≤ 106.

6. Precursor of Catastrophe

Here, we wish to address two questions which we believe are of fundamental importance in
the failure of disordered brittle materials. (i) What are the characteristics of an EIC process?
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(a)

(b)

Figure 8. Probability distribution of failure strength, rule (IV),p0 = 0.2,N = 600: (a) cumulative distribution
and fitted curve8, (b) strength distribution and fitted curveW .
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(a)

(b)

Figure 9. The dependence ofσ̄f /σc and1σf /σ̄f on the initial damage fractionp0,N = 100, rule (IV). (a)σ̄f /σc
vsp0 and fitted curve, (b)1σf /σ̄f vs.p0 and fitted curve.
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Figure 10. Evolution of EIC mode and stress fluctuations (N = 1000,σ0/σc = 0.5, rule (IV), and initial damage
fractionp0 = 0.1). Aroundp ∼ (0.8–0.85), the relative damage rate (×) increases rapidly and the relative stress
fluctuations (•) attain maximum:× the relative damage rate1p/(1− p), • the relative stress fluctuationsδσ/σ̄ ,
δσ is the standard deviation of the stress distribution.

(ii) What is the precursor of a catastrophe? If such a precursor does exist, it may help us to
predict catastrophes, like earthquake. Let us make a comparison between the EIC and GS
modes. Choose macroscopic parameters(p0, σ0) in the transitional region, where EIC and GS
modes coexist. The damage fractionp is a variable, which varies from the initial valuep0 to
a finite onepf , pf < 1 for GS modes andpf = 1 for EIC modes. The relative damage ‘rate’
can be described by1p/(1− p), where1p is the increment ofp in a ‘time step’, i.e., the
increment ofp induced by a stress redistribution. Firstly, we select an example of the EIC
mode to examine its variation in the relative damage rate with increasing damage fractionp,
which is shown in Figure 10 (N = 1000,p0 = 0.1, σ0/σc = 0.5 rule (IV)). The variablep
may be regarded as an equivalent time, though it is not a linear function of real time.

It is found that the EIC mode does show a transition from slow to rapid growth in the
relative damage rate. The major part of the life time is dominated by a slow regime, where
the damage accumulates slowly. So we call the slow regime the A-phase. Within a narrow
region in the vicinity ofp ∼ 0.85, the damage evolution transits to a regime with a very
rapidly increasing relative damage rate and then catastrophe occurs. This latter regime will
be called the C-phase. The simulation for a number of samples shows that the transition from
the A-phase to the C-phase is a common characteristic of EIC modes. These numerical results
qualitatively coincide with observations of brittle materials failure.

Then, what is the precursor of a catastrophe? According to the mean field approximation,
failure should punctually occurs at the critical pointpc given by Equation (7), and the samples
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shown in Figure 10 can never go to failure because ofp0 < pc. Therefore, the failure ob-
served in casesp0 < pc should be attributed to stress fluctuations resulting from a disordered
distribution of damages. By assumingP(σ ) be the probability distribution of stress, the stress
fluctuations in a system can be measured by relative deviation of stressδσ/σ̄ , where

δσ =
 ∞∫

0

(σ − σ̄ )2P(σ )dσ

1/2

(16)

and

σ̄ =
∞∫

0

σP (σ )dσ (17)

are the standard deviation of stress and the averaging stress, respectively, whereP(σ ) is the
distribution of stressσ . From Figure 10, we can see that the stress fluctuations keep at a
relatively low level during the initial stage of the A-phase. However, just before the transition
from the A-phase to the C-phase, obvious stress fluctuations emerge (the strong fluctuations
occur in the range 0.4 ≤ p ≤ 0.8 and the maximum level of fluctuations occurs atp = 0.8).
The catastrophe occurs generally following the peak of relative stress fluctuations. In this
sense, the strong stress fluctuations could be considered as a precursor of the transition to
catastrophe. The enhancement of stress fluctuations can be attributed to the amplifying effect
of disorder during nonlinear evolution.

Now, we compare the stress fluctuations of EIC modes with these of the GS modes for
given macroscopic parameters(p0, σ0). It is found that the level of stress fluctuations can be
considered as a mark of distinct GS and EIC modes. Letθ be the maximum ofδσ in the
whole evolution process of a sample. Clearly, the values ofθ are different for samples even
with the same initial damage fraction. Letπ(θ) be the distribution function ofθ for a group
of samples with the same initial damage fraction. Figure 11 shows thatπ(θ) is a double-
peak distribution, the peak at lowθ is related to GS modes and that at highθ is related to
EIC modes. The positions of peaksθ̂GS and θ̂EIC are separated far away at about two orders
(θ̂EIC/θ̂GS∼ 60).

To conclude, provided an alert value of maximum stress fluctuationθ is prescribed, one
can readily detect an EIC mode before a catastrophe occurs. The alert value can be set in a
broad range, for example, between 2 and 30 in the example shown in Figure 11. The greater
the alert value is set, the closer to catastrophe the prediction is. During damage evolution, if
we can monitor the level of the stress fluctuations and find some level going beyond the alert
level, we could say that the catastrophe would appear. Unfortunately, just how close to the
catastrophe remains unknown in this approach.

7. Trans-Scale Sensitivity and Transition Probability

The underlying mechanism of the above-discussed sample-specific behavior is the sensitiv-
ity of the macroscopic failure to the details of the meso-scopic damage pattern. This is a
trans-scale sensitivity linking meso-scopic and macroscopic phenomena. The difference in
the meso-scopic pattern can be measured by their Hamming distance defined by Equation (3).
For example, two phase points with a Hamming distance ofH = 1 are defined as neighboring
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Figure 11. Distribution functionπ(θ), N = 1000,p0 = 0.1, σ0/σc = 0.5, rule (IV). The double peaks indicates
the distinction between GS and EIC.

states. According to the evolution modes, the phase space can be divided into a GS region and a
EIC region. Actually, the trans-scale sensitivity originates from a sensitive zone in the vicinity
of the boundary between the GS and EIC regions (see figure 1 in [12]). In the sensitive zone,
a slight change in the meso-scopic pattern can trigger a significant macroscopic consequence,
which may especially result in the transition from GS modes to EIC modes.

Now we can give a definition of a sensitive zone. The GS region of the phase space can be
divided into two zones. The first zone is called the insensitive zone, where all the neighboring
states of a state in the zone are GS states. The second is called the sensitive zone of the
GS region, where a GS state has at least one EIC state as its neighboring state. The phase
space for a periodical chain with periodN is anN-dimensional space and a state hasN
neighboring states in different directions. For a state with damage fractionp, there areN(1−
p) neighboring states along ap-increasing direction. Letm be the number of neighboring EIC
states for a GS state. It is obvious thatm = 0 indicates the GS states in the insensitive zone
and 1≤ m ≤ N(1− p) indicates the GS states in sensitive zone. Define

µ = m

N(1− p), (18)

whereµ gives a measurement of sensitivity for a GS state. In fact, by changing an intact site
to be broken stochastically in a GS state, the probability of transition from GS to EIC is given
by the value ofµ of this state. Figure 12 shows the sensitivityµ on a slice. The value ofµ
cannot be determined by macroscopic parametersp0 andσ0 only. It represents sample-specific
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Figure 12. Sensitivityµ of GS states on a slice,N = 50,N1 = 25 andσ0/σc = 0.5, rule (IV).

behavior too. Clearly, the sensitive zone spreads all over the transitional region, because the
latter is a coexisting region of GS and EIC.

Now we turn to the implication of the sensitive zone in material failure. Up to now, the
discussed evolution rules are irreversible deterministic dynamics. More generally, we can
consider a system where deterministic dynamics and stochastic processes coexist [19]. In
order to model the stochastic process, we define a stochastic jump as a process stochastically
resulting in an increment of damage fraction1p = 1/N . The Hamming distance between
the two successive states isH = 1, i.e., they are neighboring states. The most important
consequence of the stochastic jump is to trigger a mode transition from GS to EIC . This is
what can actually occur in the sensitive zone [12, 19].

Macroscopically, this sensitivity can be described by transition probabilityψN(p, σ0). This
is the probability of a stochastic jump induced mode transition from GS to EIC, for GS states
with damage fractionp0 under nominal stressσ0 (or critical ligamentLc). In other words,9N
is the probability of a stochastic jump induced transition from a mode with a globally stable
final state to a mode which eventually evolves to catastrophe.ψN(p, σ0) is the averaging of
µ defined in Equation (18) over all the GS states with damage fractionp0 for givenσ0. One
can deduce an approximate relationship between transition probabilityψN(p, σ0) and failure
probability8N(p, σ0) as follows:

ψN(p0, σ0) =
8N

(
p0+ 1

N
, σ0

)−8N(p0, σ0)

1−8N(p0, σ0)
. (19)

For long period case, for exampleN > 30, Equation (19) becomes quite accurate. The size
effect ofψN has the same scaling law as8N .
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The multi-scale phenomena with disordered smaller scales are universal in nature. In
thermodynamic equilibrium, behaviors on a larger scale can be derived from the statist-
ical average of phenomena on smaller scales. However, the trans-scale sensitivity indicates
that a simple statistical average may no longer be sufficient to describe the nonlinear non-
equilibrium evolution of a disordered system. A minor difference in smaller scales may be
strongly enhanced during nonlinear evolution and this appears to have a major effect on a
larger scale. Such events are closely related to the sensitive zone in phase space. For material
failure, the trans-scale sensitivity switches the problem ‘to be or not to be’, so it is extremely
important.

8. Conclusion

Material failure is a complex phenomenon owing to its intrinsic features, such as multi-scales,
disorder and nonlinear evolution. The complexity manifests itself as an evolution-induced
catastrophe, sample-specific behavior and trans-scale sensitivity. In order to investigate these
aspects, we examined a simple model – a periodic chain. The slice sampling method has
been developed to analyze ensemble evolution and to calculate failure probability and mode
transition probability.

The results demonstrate that the periodic chain can reproduce some fundamental com-
plicated behavior of material failure. This behavior is universal in systems with multi-scales,
disorder and nonlinear evolution. It is noticeable that there is a transitional region in space of
macroscopic variables, e.g. the damage fractionp0 and the nominal stressσ0. The statistical
descriptions, such as the binary failure probability and the transition probability, are essential
in the phenomenon. Furthermore, the size effects of the transitional region approximately obey
scaling laws. It is also noticeable that there is a sensitive zone in phase space which plays a
fundamental role in the sample-specific behavior of material failure, the trans-scale sensitivity
and the evolution-induced catastrophe. This indicates that one has to go deep into the sensitive
zone if intending to understand the complexity observed in material failure.
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