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Abstract: In a vertically oscillating circular cylindrical container, singular perturbation
theory of two-time scale expansions is developed in weakly viscous fluids to investigate
the motion of single free surface standing wave by linearizing the Navier-Stokes equation.
The fluid field is divided into an outer potential flow region and an inner boundary layer
region. The solutions of both two regions are obtained and a linear amplitude equation
incorporating damping term and external excitation is derived. The condition to appear
stable surface wave is obtained and the critical curve is determined. In addition, an
analytical expression of damping coefficient is determined. Finally, the dispersion relation,
which has been derived from the inviscid fluid approximation, is modified by adding linear
damping. It is found that the modified results are reasonably closer to experimental results
than former theory. Result shows that when forcing frequency is low, the viscosity of the
fluid is prominent for the mode selection. However, when forcing frequency is high, the
surface tension of the fluid is prominent.
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Introduction

E Xuequan et al.!=3 carried out the flow visualization and experimental study on surface
wave patterns in a circular cylindrical vessel by vertical external vibrations. They obtained
very beautiful photographs of free surface patterns. Recently, a theoretical analysis associated
with the experiments of Refs.[1—3] was carried out by Jian Yongjun et al.14=7 | from which a
nonlinear amplitude equation, the second order free surface displacements and their contours
of the surface waves were obtained by two-time scale singular perturbation expansion in ideal
fluids. Due to ignoring viscid dissipation in their theoretical analysis, the forced frequency
had large discrepancies between theoretical and experimental results. Due to ignoring viscid
dissipation in their theoretical analysis, the forced frequency had large discrepancies between
theoretical and experimental results. Hilll® studied the Faraday resonance of interfacial waves
in a two-layer, weakly viscous system in a rectangular domain, and gave analytical expression
of damping coeflicient. This paper will consider the influence of weak viscosity on the pattern
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formation. The purpose is to determine damping coefficient analytically in a vertical oscillating
circular cylinder, which is often obtained empirically. We divide whole stream fields into outer
potential flow region and inner boundary layer region. Both solutions in these two domains
are derived by two-time scale expansion. The damping coeflicient is deduced analytically by
solvability condition of higher order solution. By modifying the dispersive relation obtained
from Ref.[6], the theoretical forced frequency is much closer to experimental result than that
of without taking weak viscosity into account for the same flow pattern both in theory and
experiment.

1 Governing Equation and Boundary Conditions in Viscous Fluid

We still consider surface waves excited by the vertical motion of a circular cylindrical basin
filled with weak viscous fluid. The choice of the coordinate system is the same as that in Ref.[4].
Supposing the fluid is incompressible, we have

V-v=0, (1)
where v = v(r, 0, z,t) is the velocity field of fluid and obeys the Navier-Stokes equation,
%+(U'V)U=—%'VW+VV21?, . (2)

where 7(r, 0, 2,t) = p(r, 8, 2,t)—po+p{(g—Z0)z, v is the kinematic viscosity and other parameters
are the same as that in Ref.[4]. At the free surface z = 5(r, 6,¢), ignoring the effect of surface
tension, the kinematic condition is

w(r, 0, 2,t)|z=n = On +v-Vn. (3)
ot
Normal part perpendicular to the free surface and the tangential part of the free surface are
. ow
(1,8, 2,)|z=n — pglg ~ Zo)n — 2v 5~ =0, (4)
ou Ow 1 ow  ov
pu(5;+5;)—py(;.-a_9+5)_0’ (5)

where u© and v denote the velocity components in r- and -direction respectively. At the bottom
and on the side-wall of the container, one must use the no-slip condition,

v(r,0,2,t) =0. (6)

o¢

at’
where ¢(r, 8, z, t)is inviscid velocity potential. As for the linear viscous problem, it is reasonable
to separate the velocity into potential flow and boundary layer velocity (velocity vector U is
relevant to boundary layers),

Under the condition of linear inviscid fluid and irrotational motion, we have 7(r, 0, z,t) =

v=V¢+U. (7)

Substituting #(r,0, z,t) and Eq.(7) into Eq.(2), and ignoring the nonlinear terms, we obtain
following diffusive equation with respect to the velocity of boundary layer,

%% =vV2U. (8)

Take Eq.(7) into Eq.(1), boundary layer velocity satisfies zero divergence condition,

V.-U=0, 9)
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Substituting Eq.(7) into Eq.(1) and Eqgs.(3)-(6), and neglecting all nonlinear terms, governing
equations and boundary conditions can be expressed as

V3¢ =0, —h<z<np(r6,t), 0<r<R, (10)
5 g e=n )
Zf +g (1+ 4‘/‘1:3 -cos2w0t) n+2v <62¢ + égf) 0, z=mn, (12)
V(%+%%)=pu(%-g—:+%)=0, z =1, (13)
Vé+U=0, z=-handr=R, (14)

where V? is three-dimensional Laplace operator in cylindrical coordinate, W is the component
of boundary layer velocity U in z-direction.

2 Non-dimensionalized Equations and Curve Coordinates

Taking the radius R of the tank as the length scale, non-dimensionalizing all related inde-
pendent variables and unknown variables, the following scalings are adopted:

2 =2/R, * =r/R, 1" =n/R, t* =t/\/R]g, " = ¢/(R\/gR), A" = A/R,
wy =wo/\/9/R, € = 4Aw3/g, v* =v/(e"*R\/4R), U* =U/+/gR. (15)

The above asterisks denote dimensionless quantities and that the asterisks are subsequently
~ dropped. The parameter ¢* quantifies the acceleration due to the vertical oscillation relative
to gravity and is assumed to be much less than unity. In order to facilitate the theoretical
analysis, we supposed that the viscosity is weak, and has been scaled as €2 in Eq.(15). Substi-
tuting Eq.(15) into Eqs.(8)—(14), the following dimensionless governing equations and boundary
conditions are obtained: ‘

V26 =0, —h/R<z<n(r6,t), 0<r<l, (16)
on 09 _ _
5 .= =0 (17)
2
9 26¢ +6W te 23U o,
ordz = Or 0z 5= (18)
(2. 0% Lawy ov_ o T
r 800z r 9 8z
¢ 29 OW
+(1+ecos2w0t)n+2z/e (6 5+ az) 0, z=mn, (19)
V¢+U=O, z=—h/R and r=1. (20)
In addition, boundary layer equations become
ou 5 _,
5% ¢ vV=U, (21)
V.U =0, (22)

where U and V are boundary layer velocity components in r- and #-directions, respectively.
Next we establish a boundary layer coordinate system. Recalling that the order of viscosity
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XN v is O(e?), and the thickness of an osciallatory boundary layer
has the order O{(2v/2)!/2}, so the order of the boundary layer
thickness is O(e). A boundary layer coordinate is introduced as
shown in Fig.1, where zy is the normal direction pointing into
the fluid from the wall, hence, opposite to n . z1, and zr, de-
termined tangential plane that is perpendicular to the normal
direction zN. So zn , zT, and zr, form a locally rectangular
Fig.1 Curve coordinates of coordinate system. We introduce a new boundary layer vari-

1 *T,

n

the boundary layer able ¢ = zn/e, then the continuity equation (22) in terms of the
local coordinate becomes
on 6UT BUT
—— U L 2} =0. 23
d¢ te ((%Tl + dzr, (23)
In the case of weak viscosity supposition, boundary layer equation (21) becomes

U 0%U
— =y, 24
a " g2 (24)

3 O(e®) Approximate Solutions

3.1 External potential flow solution of O(c°) equations

We invoke two-time scale expansions, a slowly varying time scale 7 is introduced, such that
T = te. Expanding velocity potential ¢, free surface displacement 7 and boundary layer velocity
U into power series of the small parameter ¢, and expanding Eqs.(17) and (19) into Taylor series
about z = 0, if we neglect higher-order terms O(£?), and compare the power of small parameter
e” at the two hands of Eqgs.(16)—(20), we obtain the following O(e°) potential flow governing
equation and boundary conditions:

V¢ =0, —h/R<z<n(r,t), 0<r<l, (25)
%_%‘i—":o, z=0, (26)
% +1p=0, z=0, (27)
% =0, r=1, (28)
% =0, z=-h/R. (29)

Boundary condition (26) ignores the normal velocity W of the boundary layer because it will
work in the meniscus region (this region is defined as the overlap between free surface and the
side wall boundary layer) near the wall, and will be modified in solving O(e!) potential flow.
Boundary conditions (28) and (29) overlook the normal velocity of the boundary layer on the
side-wall and at the bottom. By separation of variables, the O(£°) velocity potential and free
surface displacement can be expressed as

b0 = Im(Ar)cosh[M(z + h/R)] - [p(1)e'?t + B(7)e | cos m#, (30)
o = —if2Jm (Ar)cosh - [p(1)e? — B()e %] cos m#, (31)
here B(7) denotes the complex conjugate of p(7), “i” is the unit of an imaginary number. J,,(r)
is the m-order Bessel function of the first kind. The wave number A = Ay, satisfies dJ, (Annr)/

dr|r=1 = 0 and is the nth positive roots. Substituting Eqs.(30) and (31) to Eq.(26}, the following
dispersive relation should be obeyed:

22 = Amntanh(Ay, h/R) = Atanh(\h/R). (32)
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3.2 Internal boundary layer solution of O(g%) equations

Boundary layer regions are composed of side-wall boundary layer and bottom boundary
layer, and every boundary layer has three velocity components. Let Ugw,Vow and Wyw become
the three velocity components of side-wall boundary layer, we know the velocity Upw = 0 from
Eqs.(20) and (28). The appropriate fast coordinate is introduced by ¢w = (r—1)/e, the velocity
component Vow in the direction of f satisfies the following modified equation and corresponding
boundary conditions:

OVow ?Vow

5 = Y az, (33)

1 ¢ _
Vow = —= W o s sw =0, (34)
Vow = 0, <w — oo. (35)

The method of separation of variables was utilized again. Substituting Eq.(30) into Eq.(34),
the solution of Eqs.(33)—(35) can be formulated as follows:

Vow =mJ(A)cosh[A(z + h/R)} sin mf
. b)(T)eiQte—(IH)\/gcw +ﬁ(7_)e—i.0te—(1—i) %gw]. (36)
In the same way, the solution Wyw of z-direction on the side-wall can be written as
Wow = — A m(N)sinh[A(z + h/R)] cosmd
. [p(,r)einte—(lﬁ)\/gcw +ﬁ(7’)e_i”te‘(1‘i)\/¥w’]. (37)

Likewise, by the coordinate transformation ¢g = (z + h/R)/e , three velocity components Uy,
Vos and Wyp of bottom boundary layer can be obtained. we know the velocity Wog = 0 from
Eqs.(20) and (28), and Upg and Vpp are

Uos = — (%Jm()\r) = Mrat1 (M) ) cosmd

_[p(,’_)eiﬂte—(l+i) 2%"3+p(7—)e‘ime‘(1'i)\/g‘5], (38)
Vos = ?—Jm(/\r) sinmd - [p(,’.)ei.\’lte—(lﬂ) 4l +§(T)e—ime—(1—i)\/§m]. (39)

4 O(e') Equation, Amplitude Equation and Damping Coefficient

Comparing the power of small parameter ¢! at the two hands of Eqgs.(16)-(20), we obtain
following O(e!) governing equation and boundary conditions:

V234, =0, -h/R<2z<0, 0<r<l, (40)
%?_%%z_%+wo—“gz—=—0, z=0, (41)
% +m = —% —cos(2wot)mo, 2=0, (42)

Op1 _ __ [ (0Us  Uos  10VoBY, _
—— = _WlB - - /oo ( 8’[‘ + _’[‘— + ; 60 ) |z=—h/RdCBa SB = 0 (44)
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Since the O(e!) problem is inhomogeneous and the O(¢”) homogeneous problem had a
nontrivial solution, in order to solve O(g!), a so-called solvability condition must be satisfied.
The detailed approach is that Eq.(40) multiplied by the complex conjugate of ¢ and subtract
¢1 multiplied by the complex conjugate of Eq.(25), then integrate this equation in the region
filled fluid. The volume integral can be transformed into surface integral by using Green’s
theorem, and finally we derive the following amplitude equation p(r) associated with slowly

varying time 7:
dp(r)

—g = ~iap(7) + Bp(r), (45)

here « is a positive real number, and it represents the influence of vertically external excitation;
B denotes the complex-valued damping coefficient. The detailed expressions of « andf are

2 , A[sinh2}t + 238]) [o
Y = — = = —_— 1 i
84 4’ /6 /UW + ,BB + /BM7 /BW S.QCOShZAR’—l [7) ( + 1)7
A2 2 \202 2 .
Bo = i\ 1+, Bu= o /= (141), (46)

[4.QCosh2 ARV [2(A2 — m?)] 2

where Gw, Op and By represent the viscous damping in the side-wall, the bottom boundary
layer, and the meniscus region, respectively. Henderson!®l pointed out that the real and the
imaginary part of damping in Eq.(46) mean the value of the damping and frequency shift,
respectively. The damping of the real part causes the attenuation of the surface wave, while
the imaginary part changes the natural frequency of the surface wave.

5 Critical Condition to Appear Stable Surface Wave

Separating Eq.(45) into real and imaginary parts and letting p(7) = p1(7) + ip2(7), 8 =
B1 + i02, then Eq.(45) can be expressed as

dpi(7)/dr = Bip1(1) — (a + B2)pa2(7), (47)
dp2(7)/dr = —(a — B2)p1(7) + B1p2(T)- (48)

Ordinary differential equation groups (47) and (48) are linear and their instability condition
can be easily obtained as

o> |82, (49)
where || represents the absolute value of 3. The physical meaning of Eq.(49) is that the
vertically external excitation can not be smaller than the damping of the fluid if the surface
wave occurs. The natural frequency, with the surface tension being considered in Ref.[6], is
modified by introducing the imaginary part of the viscous damping coefficient 32 (G2 is the
damping sum of side-wall, bottom and meniscus), thus we have

2 = \/Atanh(M/R)(1 + I'/p - A2) — s. (50)

6 Computational Results

6.1 Determination of critical curve

We illustrate a critical curve with respect to dimensional forced frequency and forced am-
plitude in Fig.2 by considering the dispersive relation (32) and instable condition (49). The
unstable region is above the curve in Fig.2. It shows from Fig.2 that when the excited frequency
is small, the excited amplitude must be large enough to produce a surface wave. However, when
the forced frequency is high, the forced amplitude must be small. If both forced frequency and
amplitude are high, the parameter € cannot be less than unity, and our present theoretical
assumption cannot be satisfied.
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6.2 Influence of viscous damping and surface tension on mode selection

In order to present the influence of surface tension and damping on the pattern selection,
we gave a curve of frequency via wave number in Fig.3. It can be seen from Fig.3 that when the
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Fig.4 Comparison of theoretical contours of surface wave mode with those of experiment
(h=1.0 cm, R=7.5 cm, A=11.4 ym, »=10"% m?/s, '=0.0727 N/m, p=10° kg/m?)
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forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However,
when the forcing frequency is high, the surface tension of the fluid is prominent.
6.3 Comparison with experiment

Figure 4 illustrates the comparison of the theoretical contours including the effect of surface
tension and viscous damping in different forced frequency with experimental contours. It is
found from Fig.4 that when the wave number is low, e.g. (3, 3) mode, the forced frequency
agrees well with the experimental result. However, when the wave number is high, e.g. (7, 6)
mode, the forced frequency had large discrepancies. The reason is possibly due to the influence
of contact line and mode competition, which are ignored in our present analysis.

7 Conclusions

From above analysis, following results can be obtained:

(i) The method of two-time scale expansion is effective to resolve the problem with the effect
of weak viscosity in vertically oscillating circular cylindrical container.

(ii) The analytical expression of the damping coefficient and the critical condition to appear
stable surface wave are obtained.

(iii) When the wave number is small, the influence of the viscous damping on pattern
selection is insignificant. However, when the wave number is large, the effect of the surface
tension is important.

(iv) 1t is found that the modified results including weak viscosity and surface tension are
reasonably closer to experimental results than former theory without considering their effects.
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