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Abstract : The longitudinal fluctuating velocity of a turbulent boundary layer was measured
in awater channel at a moderate Reynolds number. The extended self-similar scaling law o
structure function proposed by Benzi was verified. The longitudinal fluctuating velocity in
the turbulent boundary layer was decomposed into many multi-scale eddy structures by
wavelet trandorm. The extended self-similar scaling law o structure function for each scale
eddy velocity was investigated. The conclusions are 1) The statistica properties o
turbulence could be self-similar not only at high Reynolds number, but also at moderate and
low Reynolds number , and they could be characterized by the same set o scaling exponents
E1(n) = 3 and€,(n) = n/3 o thefuly developed regime. 2) The range o scales
where the extended self-similarity valid is much larger than the inertial range and extends far
deep into the dissipation range with the same set o scaling exponents. 3) The extended self-
similarity is applicable not only for homogeneous turbulence, but aso for shear turbulence
such as turbulent boundary layers.
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Introduction

Much work has been devoted in the last few decades to the measurement and modeling of the
scaling law of structure function of turbulent flows. The so-called velocity structure function of
order n” for turbulent flows is definedas AV (r) " ,whereA V(r) = V(x+ r) - V(x) isthe
velocity component increment parallel to the relative displacement r of two positions separated by
a distance o rin the flow field.

Let us remember that the research of structure function scaling law is usualy limited by the
following assumptions: 1) in the full developed turbulent flow so that the Reynolds number is
infinite; 2) local homogeneous and isotropic; 3) for rin the inertia range.
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The expectation of the scaling law is that
AV(N" of ™ 1 <r<L), )
wheren is the dissipate length, L is the integral scale andé, (n) is caled scaling exponent. The
scaling law is an indication of the existence of scale invariance in turbulence.
For the third-order structure function, one can deduce the following Kolmogorov relation
within above assumptions from the Navier- Stokes equations :

2
AV(H? = §Er+@M§L, )

where V is the kinematics viscosity,  stands for ensemble averaging and€ is the average rate of
energy dissipation per unit mass. Within the inertial range, the second term on the right- hand side
in Eg. (2) can be neglected

AV(n? =- e 3)
This means that : € (3) = 1. (4
The classical Kolmogorov theory predicts that :§ (n) = J31 (5)

Benzi et al''! recently showed evidence for the so-caled extended self-similarity in their
measurements o turbulence generated either by a wake flow past a cylinder or by ajet a moderate
Reynolds number :

AV(N" = Al AV()® |5 = B, [AV(D®] S, (6)
where A, and B, are two different sets of constant independent of r. Since the third order structure
function AV (r)® is proportional to r, instead of plotting the nth-order structure function
AV (r)" against r, they plotted the nth-order structure function A V(r) " against the third-
order structure function AV (r)® . Eq. (6) is valid not only in thefully developed turbulence but
aso at moderate and low Reynolds number , even if no inertial range is established. Moreover , it
has been shown that the range of scales where Eq. (6) valid is much larger than the inertial range
and extends far deep into the dissipation range.

Stolovitzky (1993) [?! repeated the experiments of Benzi and presented their experimental
results. They measured the time series of the fluctuating velocity at a moderate Reynolds number
in a turbulent boundary layer over aflat plate and investigated the extended self-similarity of the
structure function. They revealed that, for low-order moments, a single scaling law with the
same scaling exponents not far fromé& (n) = n/3 for dissipate as well as inertial range.
However , as the order of the moment increases, the scaling law in the dissipate region and in the
inertial region separates out. Within the dissipate region, the scaling exponents are nearly given
by, (n) = n/3with& 1(8) =2.66,& 2(8) = 2.42. For rintheinertia range, the plot of versus
consists of another linear region of slopeé 1(8) = 2.05, ,(8) = 2.12 slightly less than
& (n) = n/3, joined by a smooth transitional region. The difference between the two regimes
becomes increasingly apparent for higher n.

1 Experimental Apparatus and Techniques

Experiments were conducted in a full-developed turbulent flow of a free-surface water
channel . Velocity measurements in the water channel were taken by TSI anemometer system with
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a TSI model 1210-20W single-sensor hot-film probe and a TSI model 1218 20W single-sensor
hot-film boundary probe. The coming stream velocity and intermediate Reynolds number were
Uew = 0.28m/ sand Re = 2570 respectively. The hot-film probe was located at y* = 16 above
the lower wall of the channel. Hg.1 shows the longitudina fluctuating velocity signal obtained
from the hot-film probe located in the near wall region of a turbulent boundary layer.
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Fg.1 Longtudind fluctuating velocity in the near wall region of
a turbuent boundary layer (y* = 16)

2 Extended Self-Similarity of Fluctuating Velocity Structure Function in
Wall Turbulence

In Fig. 2, we show the structure functionlog] AV(r)" | againstlog] AV(r)® | ininertia
range and in dissipation range where it is shown that the nth-order structure function has gpparently
different scaling laws in dissipation range and in inertia range. The slopes in dissipation range are
much smaller than those in inertial range. Fig.3isaplot of§ 1(n) in (6) against nininertial range
where the scaling exponents, 1 ( n) are aligned on two curves of which one is larger than§ 1(n) =
n/ 3for odd-order and the other is smaller thané 1(n) = n/ 3for even order.
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Fig.2 Structure functionlog] AV(r " | Fig.3 Hot o the scaing exponents
againstlog| AV(r)? | &1(n) against n

In Fig.4, we show the structure functionlog | AV (r)"| againstlog |AV(r)®| . Itis
shown that the nth-order structure function has gpparently different scaling laws in dissipation range
and in inertial range. The slopes in dissipate range are much smaller than those in inertial range.
Fg.5isaplot of§o(n) in (6) against nin inertia range where it is shown that& »(n) = n/ 3.

3 Multi-scale Eddy Structure Extended Self-similarity Scaling L aw

As far as turbulence is concerned, wavelet has specia physical meaning.” Eddy” provides
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Fg.5 Hot o the scaling exponent

againstlog | AV (r)?| &2(n) against n

the most suitable elementary decomposition of turbulence and is first introduced by Tennekes and
Lumleylg]. According to them, eddies are fairly broad and self-similar contributions in the
spectral domain that, unlike“ waves” , correspond to localized contributions in the physical
space. They are localized both in spatia space and in time space. Fourier Transform does not
take into account localized eddies in physics and theref ore does not suit to decompaose turbulence.
This leads the physical meaning of Fourier Transform lost. Wavelet representation provides the
decompasitions of turbulence into eddy modes and the wavelet projection could be a very good
alternative.“ Eddies” are to turbulence study , what wavelets are. Fig.6 shows the typica shape
o an“ eddy” self-correlation function proposed by Tennekes and Lumley based on turbulence
interpretation. FHg.7 shows the shape of an“ eddy” self-correlation function of wall turbulence
obtained by wavelet decompaosition from experimental measured signals. As a new tool , wavelet
transform can be devoted to the use for decomposing turbulence into eddies modes instead of
Fourier Transform. HFg. 8 shows the reconstructed single scale eddy velocity by wavelet
transformation of the sampled fluctuating velocity signal shown in Fg.1.
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Fg.6 An eddy sef-corration function of wave number k and wavelength 21T/ k 3

In Fig.9, we show the structure functionlog| A V,(r) " | againstlog| AV, (r)® | where
the nth-order structure function is aligned on a single line of slopeé 1(n) = n/3. Fg.10is a
plot of & 1(n) in (6) against nwhere it is shown that§ ;(n) = n/3.
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Fg.7 An eddy sef-correlation function obtained by wavelet transform
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Fg.8 Reconstructed velocity signal for each single scale eddy by wavelet decomposition
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Fg. 11 is a plot that log | AV, (r) " |

structure function is aligned on a single line of slope 2(n) = n/ 3. FAg.12isaplot of & 2(n) in
(6) against nwhere it is aso shown that& ,(n) = n/ 3.

versus log | AV, (n)? |
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4 Conclusions

1) The statistical properties of turbulence could be self-similar not only at high Reynolds
number , but also at moderate and low Reynolds number, and they could be characterized by the
same set of scaling exponents of the fully developed regime.

2 The range of scales where the extended self-similarity vaid is much larger than the
inertial range and extends far deep into the dissipation range.

3) The extended self-similarity is applicable not only for homogeneous turbulence, but also
for shear turbulence such as turbulent boundary layers.
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