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Abstract An accurate method which directly accounts for the interactions bctween different microcracks is used for 
analyzing the elastic problem of multiple cracks solids. The effectivc clastic moduli for randomly oriented cracks and 
parallel cracks are evaluated for the representatwe volume element (RVE) with microcracks in infinite media. The nu- 
mencal results are compared with those fmm various micromechanics models and experimental data. These results 
show that the present method is simple and provides a direct and efficient approach to dealing with elastic solids con- 
taining multiple cracks. 
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Brittle materials (e .  g .  ceramics matrix and metal matrix composites, ceramics, rocks, and 

concrete) often contain large numbers of microcracks. Due to the presence of these microcracks, 

the materials become weaker and less stiff. This is of considerable interest for researchers in the 

fields of materials, solid mechanics, and engineering. The effective moduli of solids containing 

microcracks have been estimated by a number of investigators using various models, such as Tay- 

lor's models or the method of dilute distribution where microcrack interactions are entirely ne- 

glected, the self-consistent method['], the generalized self-consistent model['], and the differen- 

tial schemeL3' and the Mori-Tanaka methodL4' where microcrack interactions are indirectly ac- 

counted for. ~ h e s i  methods are only valid for low or moderate crack density, since they do not 

depend on locations of microcracks, and they are not used to deal with the damage and fracture 

process of brittle materials. As crack density increases and microcrack spacings are closer, strong 

interactions between microcracks occur and the mutual positions of cracks become important. 

Then strong microcrack interaction models have been proposed. ~ a c h a n o v ' ~ ]  proposed a pseudo 

traction method to solve multiple cracks problem which took into account the strong interaction 

between microcracks. This method is simple, and can be used to higher microcrack concentra- 

tions. But Kachanov's interaction scheme corresponds to the case in which the unknown crack- 

line tractions are approximated only by their averages. Huang et al. [61 calculated the effective 

moduli of microcracked solids, in conjunction with a unit cell model. A unit cell was assumed to 

be periodic in the solid. Fond et al. ['I used the pseudo tractions technique to deal with interac- 

tions between cracks and circular cavities in two-dimensional finite or infinite media. Vavakin and 
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salganik[" and Carvalho and ~ a b u z ' ~ '  presented the results of experiments designed to measure ef- 

fective elastic properties of artificially cracked and porous aluminum plates under plane stress con- 

ditions by uniaxial tension tests. 

The  purpose of the present study is to solve the elasticity problem of two-dimensional solid 

with multiple microcracks by using an accurate and efficient method['01. Each crack is treated as 

continuous dislocations, and the complex potentials are expressed as series with a set of unknown 

coefficients. Analysis is based on a superposition scheme. By using the traction free conditions on 

each crack surface, a set of governing equations are formulated. The governing equations are te- 

duced to a set of algebraic equations for the unknown coefficients and are solved numerically on the 

basis of a boundary collocation procedure. In the present work, crack density is a parameter that 

characterizes the effect of microcracking. The  effective Young's moduli based on this method for 

randomly distributed cracks and parallel cracks are evaluated for R V E  with microcracks in infinite 

media. 

1 Effective elastic moduli of the RVE 

1 . 1  Basic formulae 

1 . 1 . 1  A single crack. It is well known that stresses and displacements for a homogeneous 

elastic body under plane deformation can be represented by two complex potentials. T o  be conve- 

nient for our purpose, potentials a (  z )  and R  ( Z )  will be used. Stresses can be derived from ref- 

erence [ 11 ]  
a, + 0, = 2 [ 0 ( Z )  + a ( z ) ] ,  

- -  

a, - ia, = a ( ~ )  + R(;) + ( z  - z )  a ' ( ~ ) .  (1)  
A crack can be considered as a continuous distribution of infinitesimal edge dislocation. For a 

single crack lying on the real axis between s = - u and s = u in an infinite plate, the complex po- 

tentials @( z )  and R  ( z )  are given by the following formula: 

where g ( . s )  is the dislocation density at point z = s on the crack surface. For the plane strain 

problem K = 3 - 4  v ; for the plane stress problem K = ( 3  - v ) / ( 1  + v ) . ,u is the shear modulus and 

v is Poisson ' s ratio. 

The  dislocation density can be expressed as the following series: 

where T ,  ( E )  is Chebyshev polynomials of the first kind and € = s / u  . 
Then, substituting eq. (3)  into eq. (2) ,  we obtain 

Substituting eq. (4)  into eq. ( I ) ,  the stress field at any point due to the crack can be ex- 

pressed as a series. Especially the stress field on the crack surface can be express as 
m 

where U ,  ( s/u ) is Chebyshev polynomials of the second kind 
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1.1.2 A set of arbitrary cracks. An infinite plane contains a set of arbitrary 2-D of N cracks. 
A global Cartesian coordinate system Oxy is situated. A local normal-tangential coordinate system 

employed with origin ( O h )  at the center of the k th crack is represented by x k  and yk . The geom- 

etry of the k th crack is specified by the center coordinates ( xtk), y!') ), orientation angle dk, 
and the half length of the crack a k .  

Suppose that the elastic plane is subject to remote uniform loading a,", a; and a:'. Then the 
traction along the k th  crack surface produced by it is 

$ 1  - (0) = 2 r  + j 7 e - 2 i 0 4  isd , k = 1,2;.., N ,  ( 6 )  
where 

r = ( u y  + 0;)/4, r' = (0," - o 7 ) / 2  + i a g .  

The superposition scheme is used to solve the problem of the solids with multiple micro- 
cracks. From above, the complex potentials Qk ( zk ), nk ( zk ) and the stresses ( zk ), 09 ( zk ), 
a,*(zk) produced by the k th crack in the local coordinate system O g o k  can be expanded as se- 

ries. 
According to the formulae of coordinate system transformation, the tractions along the L th 

crack surface in local coordinate system Oplyl  produced by the k th crack can be written as fol- 
lows: 

(7) 
where 8=e1  - ek,  zk = (C1  - ~ ~ ) e - " k  + zlel('l-Oh), u $ ) ( z l )  - i o 2 ) ( z 1 )  are the stresses pro- 
duced by the k th crack in the local coordinate system Olxlyl. 

According to the superposition scheme, the traction-free condition on each crack surface can 
be written as follows: 

N 

');7[o$)(x1> - io!$(x1)] = 0, I x1 I < a l ,  1 = 1.2, N,  
k = O  

(8) 

where for positive k a$)( x l )  - in$) ( xl ) are the tractions along the 1 th microcrack surface in lo- 

cal coordinate system Olx,.yl produced by the k th microcrack. o$') ( x1 ) - ia$$ ( sl) are the trac- 
tions along the Lth microcrack surface in local coordinate system Oplyl produced by the remote 
loading. Thus, eq. ( 8 )  is the governing equation for determining the unknown coefficients ak ,  

( k = l , . . . 2 , , N ;  m = O ,  1,  . . a ,  m).  

1 . 1 . 3  Calculation procedure. The governing equations are solved numerically on the basis of 
crack surface boundary collocation method. By dividing the k th  crack surface into Mk elements, 

the collocation points on the k th crack surface are given by the following expression: 

The infinite series can be approximated with a sufficient degree of accuracy by the corresponding 
truncated series with Mk terms. The governing equation (8) is reduced to a'system of linear alge- 

braic equations for the unknown coefficients ah, ( k  = 1 ,2 ,  ..., N ; m = 0 , 1 , 2 ,  ..., Mk 1. 
Due to the closure condition at crack tips, the following equation can be given: 
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It is easily shown that aka = 0 .  

When the algebraic equations are solved, the complex potentials and the stress components 
produced by each crack are known. According to the superposition principle, the stress fields by 

the multiple cracks are obtained via the transformation formulae from the local coordinate systems 
into the global one. 

2 Effective elastic moduli of the RVE 

The effective compliance of the RVE can be calculated by the following formulae: 

(8)  = M :  ( a ) .  (10) 
where (E)  is the average strains, ( a )  is the average stress, and M is the effective compliance. 

In this paper, two methods are used to calculate the average strains and stresses of the RVE. 

The first method is that the average strains and stresses are calculated by means of 

Kachanov's method[51. For flat cracks in 2-D, the average strains can be expressed as 

1 
(8) = M O : ( a )  + % C ( ( b ) n  + n ( b ) ) L L ,  (11) 

1 

where M0 is the compliance tensor of the matrix material; n is the unit normal n") to the l t h  

crack; A is the area of the RVE, and a' is the half length of the l t h  crack. ( (b)  )' is the average 
displacement discontinuity vector. 

The average stresses can be expressed as 

(u) = u O ,  (12) 

where a0 is the remote loading. 

The second method directly calculates the average strains and stresses of the RVE, which can 
be expressed in terms of quantities defined on the outer boundary of the RVE. The average strains 
are given by the integral 

where u0 is a displacement vector of the outer boundary of the RVE. 

Average stresses are defined by the following formulae: 

where x is a position vector and to  is a traction vector of the outer boundary of the RVE. to  = n 
U, where u are the stresses of the outer boundary of the RVE. 

For the imposed uniaxial tension in el-direction and xz-direction and imposed pure shear 

case, respectively, we can obtain the effective compliance MI1, M22, Ms6, and then the effective 
moduli El ,  & , p12 can be calculated. 

3 Numerical examples 

The crack density is defined for a microcracked solid (2-D) as['] 

In this paper, N is 36, and six crack densities are assumed to be p = 0.10,  0.15,  0.20,  0.25, 

0.30, 0.35.  The RVE is divided uniformly into meshes in order to contain one microcrack for 
each mesh. Locations and orientations of microcracks are randomly generated in each mesh (for 
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parallel cracks, microcracks are randomly generated in locations, but are parallel to the x, direc- 
tion). In the course of generation, they are regenerated if there is an intersection among cracks or 
an intersection between microcracks and the boundary of the RVE. Fifteen sample arrays are con- 
sidered for each density. The effective Young's moduli are calculated for each crack distribution 

for randomly oriented cracks and parallel cracks. The Poisson's ratio of the matrix material is 
0 . 3 .  The present study is limited to plane stress analysis and each crack length is the same. 

For randomly oriented cracks, the effective elastic moduli are evaluated and they are shown 
in figs. 1 and 2. For parallel cracks, the effective Young's moduli are presented in fig. 3, along 
with the solutions of other micromechanics models. 

Crack density p Crack densityp 

Fig. 1. Normalized effective Young's moduli vs. crack density p for randomly oriented cracks. ( a )  xl-direction; (b) 
.r2-direction. -, Taylor's models: - - - , differential; - . - , self-consistent; 0, present results (method 1) .  

Crack densityp Crack densityp 

Fig. 2 .  Normalized effective Young's moduli vs. crack density p for randomly oriented cracks. (a )  rl-direction; (b) 
z2-d~rection. -. - - - . - . - , The same as thuw in fig. I ; 0, present results (method 2 ) .  

As shown in these figures, the 15 generalizations of microcracks for each crack density pro- 
vide stochastic variations in the moduli. This scatter really reflects the features of randomly dis- 
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Crack densityp Crack densityp 

Fig. 3 .  Normalized effective Young's moduli vs. crack density p, for parallel cracks. -, - - - . The same as those 

in fig. 1 ; 0,  present results (method 1 for (a ) ,  method 2 for (b)) . 

tributed cracks. For randomly oriented cracks, the mean of the moduli obtained by the first 
method is close to the solution using the non-interacting solution, which agrees well with that in 
literature[51 . The range of the moduli obtained by the second method is below that for non-inter- 

action solution and above that for the differential method, coinciding with Huang ' s results[61 . For 
parallel cracks, the same conclusion is obtained with the randomly oriented cracks. 

In order to compare the solutions of the present method with the experimental results[91, the 
effective elastic moduli are also calculated for the RVE with randomly oriented cracks. The size af 
the RVE and the elastic constant of the material are the same as the specimensr9]. The number of 
the microcracks is 20; the crack densities are assumed to be between 0 .02 and 0.  15. Fig. 4 
shows the results of the present method. From the figure, it  is found that the effective elastic 
moduli, obtained by using the second method, are closer to the experimental results[9' than those 

Crack density p Crack densityp 

Fig. 4.  Comparison of the present results with the experimental results for randomly oriented cracks. -, - - - . - . -  .The same as those in fig. 1 ; 0 ,  experimental results (20 cracks) ; A. experimental results ( 6  cracks) ; 0. pre- 

sent results (method 1 for (a ) ,  method 2 for (b)). 
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of the first method, indicating that the method which directly calculates the average strains and 

stresses is better for representing the interactions between different microcracks and is nearer to 
the actual situation. 

4 Conclusion 

In this paper, for randomly oriented cracks and parallel cracks, the effective elastic moduli of 

the RVE are computed using the method that directly accounts for the interaction of microcracks. 

Numerical results show that the present method is rather general and simple. The calculated re- 
sults agree well with the experimental dataL9] and other numerical results[5s61. From the compari- 

son of the results, it can be found that the present method has a very high efficiency and accura- 

cy, providing an efficient approach to dealing with elastic solids containing multiple cracks. 

Though this paper limits on nonintersected cracks problem, through some correction this 
method can cope with intersectional cracks problem. In addition, the present method can be used 

to solve the plane elasticity problem of finite plates with microcracks by improving it. Thus, the 

present method can be used not only to estimate the effective elastic properties of cracked solids, 

but also to study the damagd procedure of brittle materials. 
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