
Suggestion of a new dimensionless number
for dynamic plastic response of beams and plates

Y. P. Zhao

Summary A dimensionless number, termed response number in the present paper, is sug-
gested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic
materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic
governing equations of beams and plates. The number is de®ned as the product of the John-
son's damage number and the square of the half of the slenderness ratio for a beam; the
product of the damage number and the square of the half of the aspect ratio for a plate or
membrane loaded dynamically. Response number can also be considered as the ratio of the
inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are
re¯ected in this dimensionless number: the inertia of the applied dynamic loading, the resis-
tance ability of the material to the deformation caused by the loading and the geometrical
in¯uence of the structure on the dynamic response. For an impulsively loaded beam or plate,
the ®nal dimensionless de¯ection is solely dependent upon the response number. When the
secondary effects of ®nite de¯ections, strain-rate sensitivity or transverse shear are taken into
account, the response number is as useful as in the case of simple bending theory. Finally, the
number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of
general shape.
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1
Introduction
For a continuum loaded impulsively, or impinged by an initial velocity pulse V0, Johnson's
damage number is de®ned by [1]

Dn � qV2
0

r0
; �1�

where q and r0 are density and yield stress of the material, respectively. Parameter Dn is a basic
dimensionless similarity parameter in impact dynamics. In fact, the damage number can be
obtained by reducing to dimensionless terms the equation of motion. As an example, consider
the well-known equation of motion for a one-dimensional problem

or
ox
� q

oV

ot
; �2�

where r and V denote stress and particle velocity, respectively. To make it dimensionless, we
introduce the dimensionless variables as follows:
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R � r
r0
; s � t

T
; X � x

V0T
; V � V

V0
; �3�

where T is a characteristic time. By using transformation (3), we can render (2) dimensionless as

oR
oX
� qV2

0

r0

oV

os
: �4�

It is evident from (4) that damage number is a dominant dimensionless parameter for the
dynamic plastic response of material. The damage number can be understood as a measure of
the order of strain imposed in the region where severe plastic deformation occurs; it can also be
considered the ratio of inertia force of the loading �qV2

0 � to the resistance ability of the
dynamically loaded material �r0�. In the same manner, Cauchy number [2±4]

Ca � qV2
0

E
; �5�

can be obtained by making dimensionless Eq. (2) through the introduction of a dimensionless
stress R � r=E, other dimensionless variables are the same as (3), where E is the Young's
modulus of the material. Cauchy number is thus an important similarity parameter for the
dynamic elastic response of material under impact loading.

A rectangular pressure pulse p�t� � p�H�t� ÿ H�t ÿ s�� represents an idealization for dy-
namic loads in the ®eld of dynamic plasticity of structures [3, 5], where p and s are the
magnitude and the duration of the pulse, respectively, H�t� is the Heaviside step function. The
damage number equivalent to (1) for this kind of loading is [6]

Dn � I2

qr0H2
; �6�

where I � ps is the impulse of the rectangular pressure pulse, H is the thickness of a plate or a
beam.

In practice, dynamic loads may be complicated, varying rapidly with time. They can not be
described approximately and effectively by a velocity pulse or rectangular pressure pulse. Still,
for dynamic loads of general shape, the damage number equivalent to (1) and (6) can be also
de®ned as [7]

Dn � I2
e

qr0H2
; �7�

where

Ie �
Z tf

t0

p�t� dt

is the effective impulse of the applied loading, t0 and tf are the times when plastic deformation
begins and ends, while tf can be found as

p0 tf ÿ t0

ÿ � � Ie ; �8�

where p0 is the plastic limit load of the structure.
Generally speaking, two aspects are re¯ected in the damage number Dn, the inertia of the

impulsive loading qV2
0 and the resistance ability of the material to plastic deformation r0.

These two aspects are the main characteristics of dynamic plastic response of materials. For
dynamic plastic response of structures, besides the aforementioned two factors, there is another
important factor, that is the in¯uence of the geometry of the structure.

The objective of the present paper is to suggest, by making dimensionless the governing
equations, a dimensionless number which can re¯ect the three factors of the dynamic plastic
response of structures: inertia of the loading, the resistance ability of the material of the
structure to deformation and the structural geometry.
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2
Derivation at dimensionless governing equations of beams and plates
It is well known that the Reynolds number Re in ¯uid dynamics can be obtained by making
dimensionless the Navier±Stokes equations. Reynolds number Re � qVL=l � VL=v represents
the ratio of the inertia force qV2 to the shear stress lV=L, where v is the kinematic viscosity.

The derivation of Re is instructive for the study of the dynamic plastic response of
structures subjected to impact loading. For simplicity and without loss of generality, we
®rst consider a beam subjected to uniformly distributed impulsive loading. The governing
equation of the beam is [3, 5]

m0 �
Z x

0

l�w

M0
dxÿ 4n

H
w0 ; �9�

where l is the mass of the beam per unit length, thus l � qH, w is the transverse de¯ection of
the beam, m � M=M0 and n � N=N0 are dimensionless bending moment and axial force,
respectively. The quantity M0 � r0H2=4 denotes the fully plastic bending moment per unit
length of a beam with a rectangular cross section and unit width, N0 is the fully plastic axial
force per unit length. The second term on the right-hand side of (9) introduces the axial forces
arising from axial constraints. This term vanishes for simple bending theory. Differentiating (9)
with respect to x we obtain

o2m

ox2
� l�w

M0
ÿ 4n

H

o2w

ox2
ÿ 4

H

ow

ox

on

ox
:

If the beam span is 2L, and the dimensionless variables X;W and T are introduced through

X � x

L
;W � w

H
; t � HT

V0
; �10�

then the dimensionless form of (9) is

1

4

o2m

oX2
� qV2

0

r0

L

H

� �2 o2W

oT2
ÿ n

o2W

oX2
ÿ oW

oX

on

oX
: �11�

It is easy to see that the coef®cient of the ®rst term on the right-hand side of (11) is the
dominant similarity parameter for dynamic plastic response of beams subjected to impulsive
loading. For convenience, this dimensionless number is termed ``response number'' by the
present paper as

Rn � qV2
0

r0

L

H

� �2

: �12�

From (12) follows that response number is the product of the Johnson's damage number and
the square of the half of the slenderness ratio of the beam. Three aspects are re¯ected in this
number, i.e. the inertia of the load qV2

0 , the resistance ability of the material to plastic de-
formation r0, and the geometry of the structure L=H. Actually, the latter two factors could be
combined in one, the plastic limit load of the beam. If the plastic limit load of a beam is of the
order p0 � r0�H=L�2, then the response number can be also considered of the order of the ratio
of the inertia of the impulsive loading to the plastic limit load of the beam p0, i.e.

Rn � qV2
0

p0
: �13�

Similarly, the response number for a rectangular pressure pulse can be expressed by

Rn � I2

qr0H2

L

H

� �2

: �14�
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For dynamic load of general shape, the response number is

Rn � I2
e

qr0H2

L

H

� �2

: �15�

For simplicity and without loss of generality, we take a circular plate as an example for the case
of plates. If both rotatory inertia and axial force are disregarded, the motion equation of a plate
subjected to impulsive loading in polar coordinates �r; h� is [3, 10, 11]

�rMr�0 ÿMh �
Z r

0

m �wr dr ; �16�

where m is the mass of the plate per unit area of neutral plane, thus,
m � qH; ���0 � o���=or; ��� � o���=ot: Mr and Mh are radial and circumferential bending
moments per unit length, respectively. Differentiating (16) with respect to r, we have

�rMr�00 ÿM0h � qH �wr : �17�
If the radius and thickness of a circular plate are denoted by L and H, respectively, and if we
introduce R as the dimensionless radial coordinate, T as the dimensionless time, and W as the
dimensionless de¯ection, then we have the following relationship:

R � r

L
; t � HT

V0
; W � w

H
: �18�

Letting mR � Mr=M0 and mh � Mh=M0 denote dimensionless radial and circumferential
bending moments per unit length, respectively, we have the dimensionless motion equation of
the circular plate as follows:

1

R

o2�RmR�
oR2

ÿ 1

R

omh

oR
� 4

qV2
0

r0

L

H

� �2 o2W

oT2
: �19�

By comparing (19) and (11), it is easy to ®nd that the same dimensionless parameter-damage
number Rn � �qV2

0=r0��L=H�2 is also included in (19). For a circular plate, since the plastic
limit carrying capacity is p0 � r0�H=L�2, the response number for circular plate can also be
considered as the ratio of the inertia of the load to the plastic limit carrying capacity.

In general, for the study of dynamic plastic response of beams and plates subjected to
uniformly distributed impact loads, a quite useful dimensionless product can be put forward as

Rn � Dn
L

H

� �2

; �20�

where L and H are two characteristic dimensions of the structures. For a simply supported (or
fully clamped) beam, L and H are taken to be the semi-length and the thickness; for a circular
plate or membrane, L and H are taken to be the radius and the thickness; for a simply
supported (or fully clamped) square plate, L and H are taken to be the semi-width and the
thickness; and for a rectangular plate, L and H are taken to be semi-width and thickness,
respectively. From the de®nition of (20), we know that the dimensionless number Rn is the
product of the damage number expressed in (1), (6) or (7) and the square of half the slen-
derness ratio for a beam, the product of the damage number and the square of half the aspect
ratio for a circular plate or a membrane, for a square plate as well as for a rectangular plate.

3
Dimensionless expressions of the permanent displacements
of some structures loaded dynamically
To show the validity of the damage number in the analysis of dynamic plastic response of
structures, some known results will be related to this dimensionless number in this section.
Besides the results of simple bending theory, some secondary effects such as ®nite- de¯ections,
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strain-rate sensitivity, transverse shear etc., will be also considered. The dynamic loads include
idealized ones such as impulsive loading, rectangular pressure pulse, as well as dynamic loads
of general shape.

To avoid ambiguity, we ®rst de®ne the two characteristic dimensions of a structure. The
semi-span of the beam, the radius of the circular plate, and the half width of the rectangular plate will
be denoted by L; the thickness of the aforementioned structures will be represented by H.

3.1
Simply supported beam subjected to uniformly distributed impulsive loading V0

Consider a simply supported, rigid-perfectly plastic beam of unit width. By using the simpli®ed
Tresca yield conditions, the dimensionless maximum de¯ection at the midpoint of the beam is
[12]

wf

H
� 1

3

lV2
0 L2

M0H
; �21�

where M0 � r0H2=4 is the fully plastic bending moment of the beam per unit length, l the
mass of the beam per unit length. Equation (21) is only valid for in®nitesimal displacements.
If the second-order effects of ®nite displacements are considered, then the ®nal central
displacement of the beam is [13]

wf

H
� 1

4
1� 3

lV2
0 L2

M0H

� �1=2

ÿ1

" #
: �22�

If both bending moments and axial forces are considered, the dimensionless permanent mid-
point displacement of the beam is [3]

wf

H
� 1

4

1

2
� 2

lV2
0 L2

M0H
� 1

2
1� 8

3

lV2
0 L2

M0H

� �1=2
" #1=2

ÿ1

8<:
9=; : �23�

By using the response number Rn in (12), Eqs. (21)±(23) can be recast into the form of

wf

H
� 4

3
Rn;

wf

H
� 1

4
�1� 12Rn�1=2 ÿ 1
h i

;

wf

H
� 1

4

1

2
� 8Rn� 1

2
1� 32

3
Rn

� �1=2
" #1=2

ÿ1

8<:
9=;

8>>>>>>>><>>>>>>>>:
�24�

Relations (24) that the dimensionless central displacement of a beam subjected to uniformly
distributed impulsive loading is dependent solely upon the response number, in other words,
only upon the ratio of the inertia force of the loading to the plastic limit carrying capacity of the
beam.

It should be noted that (21)±(23) are only valid when [3]

Q0L

2M0
� 3=2 ; �25�

where Q0 � r0H=2 is the fully plastic transverse shear force per unit length of the rectangular
cross section. For 1 � Q0L=�2M0� � 3=2, second-order effect of transverse shear must be
considered. The central permanent displacement of the beam is changed from (21) to [3]

wf � lL2V2
0

4M0

1� 6�kÿ 1�
4kÿ 3

; �26�
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where k � Q0L=�2M0�. Obviously, (26) can be recast into the dimensionless form

wf

H
� Rn

6kÿ 5

4kÿ 3
: �27�

Evidently, (27) can be reduced to the ®rst one of (24) when k � 3=2.

3.2
Fully clamped beam subjected to uniformly distributed impulsive loading V0

The dimensionless permanent de¯ection of the mid-point of a fully clamped beam of unit width
loaded impulsively is expressed in the form of [3]

wf

H
� 1

2
1� 3

4

lV2
0 L2

M0H

� �1=2

ÿ1

" #
: �28�

By using the response number in (12), (28) can be changed into the following form:

wf

H
� 1

2
�1� 3Rn�1=2 ÿ 1
h i

: �29�

Equation (28) is developed for a square yield curve that circumscribes the exact maximum
normal stress-yield curve. The in¯uence of ®nite-de¯ections is retained in the governing
equations. Assume that the yield condition for bending moment M and axial force N is taken as

jMj
M0
� N

N0

� �2

� 1 :

Then the dimensionless ®nal displacement, assumed to be the maximum excursion of the mid-
point, is found to be [13]

wf

H
� 1

2

������������������������
1� 2

3

lV2
0 L2

M0H

s
ÿ 1

24 35 : �30�

Equation (30) can be obviously expressed in the form

wf

H
� 1

2

�����������������
1� 8

3
Rn

r
ÿ 1

 !
: �31�

As the simply supported beam, the dimensionless ®nal displacement of a fully clamped beam
loaded impulsively is only dependent upon the ratio of the inertia force of the impulsively
loading to the plastic limit carrying capacity of the beam.

It is well known that the yield stress of most metallic materials increases with strain rate.
Cowper and Symonds suggested the following constitutive equation;

_� � D
r00
r0
ÿ 1

� �q

; r00 � r0 ; �32�

where r00 is the dynamic yield stress at an uniaxial plastic strain rate _�, r0 the associated static
yield stress, D and q are constants for a particular material. Obviously, (32) can be recast into
the form of

r00
r0
� 1� _�

D

� �1
q

:

For an impulsively loaded fully clamped beam of unit width, if strain-rate sensitivity is taken
into account, then (29) can be changed into
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wf

H
� 1

2
1� 3

n0
Rn

� �1=2

ÿ1

" #
; �33�

where the ratio of the dynamic yield stress to the associated static yield stress is [3]

n0 � r00
r0
� 1� V0wf

3
���
2
p

DL2

� �1=q

:

An experimental investigation [14] was conducted into the dynamic plastic response and
failure of fully clamped metal beams which were subjected to uniformly distributed impulsive
loading over the entire span (shown in Fig. 1). Three failure modes were classi®ed in [14] for
fully clamped beams with rectangular cross sections as follows:

Mode I: large inelastic deformation of the entire beam;
Mode II: tearing (tensile failure) of the beam material at the supports;
Mode III: transverse shear failure of the beam material at the supports.

These three failure modes are illustrated in Fig. 2.
On the basis of the result of the experiment [14], an approximate theoretical study [15] was

carried out for predicting the onset of these three failure modes. For Mode I failure of fully

Fig. 1. Clamped beam subjected to impul-
sive loading

Fig. 2. Three typical failure modes of im-
pulsively loaded clamped beam
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clamped, rigid-perfectly plastic beam with unit width, (28) or (29) can be used to predict the
large plastic deformation. Mode II-failure is caused by excessive tensile strain, the threshold
velocity to cause such kind of failure is given by

V0 � 1�
����������������������������������������������
2 2� �r 2

L

H

� �2

ÿ2
L

H

" #vuut8<:
9=;H

L

�����
r0

3q

r
; �34�

where �r is the critical value of the tensile strain. By using the dimensionless number Rn in (12),
(34) can be rearranged into

Rn � 1

3
1�

����������������������������������������������
2 2� �r 2

L

H

� �2

ÿ2
L

H

" #vuut8<:
9=;

2

: �35�

3.3
Simply supported beam subjected to rectangular pressure pulse
If the beam is subjected to uniformly distributed rectangular pressure pulse, the relationship of
the impulse with the impulsive loading is I � ps � qV0H, then the dimensionless form of the
beam's motion equation is

1

4

o2m

oX2
� ÿ p

r0

L

H

� �2

� I2

qr0H2

L

H

� �2 o2W

oT2
ÿ n

o2W

oX2
ÿ oW

oX

on

oX
: �36�

It is easy to see that the ®rst term on the right-hand side of above equation is the order of the
ratio of the magnitude of the load to the plastic limit load of the beam; thus, both the response
number Rn and p=p0 will be included in the expression of the ®nal displacement.

If the beam is subjected to uniformly distributed rectangular pressure pulse in medium
range p0 � p � 3p0, the ®nal mid-point displacement of the beam is given by [3]

wf � 3
p

p0

p

p0
ÿ 1

� �
M0s2

2lL2
; �37�

where p0 � 2M0=L2 is the static collapse load of the beam. In the same manner as the impulsive
loading, (37) can be rewritten into the following dimensionless form

wf

H
� 3

2
Rn 1ÿ p0

p

� �
; �38�

where (14) is used in the expression of the response number Rn.
Similarly, for high load p > 3p0, the dimensionless permanent central displacement of the

beam is

wf

H
� 4

3
Rn 1ÿ 3

4

p0

p

� �
: �39�

By comparing the ®rst equation in (24) and (39), we know that the result of impulsive loading is
the limit case of that of the rectangular pressure pulse when p0=p! 0 and s! 0.

3.4
Free-free beam
The dynamic plastic failure of a free-free beam was studied in [16]. The amplitude of the
rotational motion of the mid-point of the free-free beam subjected to uniformly distributed
rectangular pressure pulse is

wf � ps2

2l
p

p0
ÿ 1

� �
: �40�
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By virtue of response number Rn, (40) can be expressed by a dimensionless form as

wf

H
� Rn

6
1ÿ p0

p

� �
; �41�

where (14) is used in the expression of the response number Rn. For impulsive loading, the
limit of (41) when p0=p! 0 and s! 0 is then

wf

H
� Rn

6
; �42�

where (12) is used in the expression of the response number Rn.

3.5
Circular plate
Consider a simply supported, rigid-perfectly plastic circular plate subjected to uniformly dis-
tributed rectangular pressure pulse. For a medium load p0 < p < 2p0, the ®nal displacement at
the center of the plate is [17]

wf � ps2�pÿ p0�
lp0

; �43�

where p0 � 6M0=L2 is the static collapse load of the circular plate, the simpli®ed Tresca yield
condition has been used to obtain (43). By using the response number Rn in (14), (43) can be
changed into the following dimensionless form

wf

H
� 2

3
Rn 1ÿ p0

p

� �
: �44�

Similarly, for a high load p � 2p0, the dimensionless ®nal displacement at the center of the
plate is

wf

H
� 1

3
Rn

3

2
ÿ p0

p

� �
: �45�

The result for uniformly distributed impulsive loading is the limit case of (45) when p0=p! 0
and s! 0 [18]; thus, the dimensionless ®nal central displacement of the plate is

wf

H
� Rn

2
: �46�

It should be noted that (46) is valid when [3]

Q0L

2M0
� 2 : �47�

For 3=2 � Q0L=�2M0� � 2, the effect of transverse shear must be considered, then central
permanent displacement of the plate is [3]

wf � lV2
0 L2

24M0

4kÿ 5

kÿ 1
; �48�

where k � Q0L=�2M0� for circular plate. Equation (48) can be rewritten into

wf

H
� 1

6
Rn

4kÿ 5

kÿ 1
: �49�

It is obvious that (49) can be reduced to (46) when k � 2. In fact, Q0L=�2M0� � L=H holds for
beam and plate; thus, this value can also be termed half the slenderness ratio or aspect ratio for
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a beam or a plate, respectively. If the second-order effect of transverse shear is considered,
we know from both (27) and (49) that the dimensionless ®nal central displacements of
beam and plate are dependent upon two factors: the response number Rn and the
slenderness or thinness ratio.

Consider a simply supported, rigid-perfectly plastic circular plate subjected to impulsive
loading. If ®nite-de¯ections effect is taken into account, then the dimensionless permanent
de¯ection of the center of the circular plate is given by [3]

wf

H
� 1

2
1� 2

3

lV2
0 L2

M0H

� �1=2

ÿ1

" #
: �50�

By using the response number, (50) may be recast into the form of

wf

H
� 1

2
1� 8

3
Rn

� �1
2

ÿ1

" #
: �51�

A closed-form solution was obtained by [8] for the dynamic plastic deformation of a simply-
supported circular plate subjected to a pressure pulse of general shape. This solution is also
based on the simpli®ed Tresca yield surface. The ®nal central displacement of the plate for no
hinge band �pmax � 2p0� is

wf � I2
e

lp0
1ÿ p0

pe

� �
; �52�

where pe � I2
e=2

R tf

t0
�t ÿ t0�p�t�dt is the effective pressure: Equation (52) can be changed into

wf

H
� 2

3
Rn 1ÿ p0

pe

� �
: �53�

It should be noted that (15) is used in the expression of the response number. The ®nal
displacement at the center of the plate with hinge band is found to be [8]

wf � I2
e

lp0
1ÿ p0

pe
ÿ 1

2

I�e
Ie

� �2 1

2
ÿ p0

p�e

� �" #
; �54�

where

I�e �
Z tc

t0

p�t�dt; p�e �
I�2e

2

Z tc

tb

�t ÿ tb�p�t� dt ;

tb is the time when p�t� � 2p0, and tc is the time when the hinge band shrinks to the origin.
Similarly, the dimensionless form of (54), by using the response number in (15), is

wf

H
� 2

3
Rn 1ÿ p0

pe
ÿ 1

2

I�e
Ie

� �2 1

2
ÿ p0

p�e

� �" #
: �55�

The result was known of the dynamic plastic response of a simply supported annular plate with
inner radius a and outer radius L subjected to rectangular pressure pulse with a distribution
p�r� � p�Lÿ r�=�r ÿ a�; a � r � L (see for example [3]). r is the radial coordinate. The di-
mensionless permanent displacement distribution under impulsive loading which is the limit
case of that under rectangular pressure pulse is given by

Wf

H
� lV2

0 L2

24M0H
�1� 3a� 1ÿ r

L

� �
; �56�

where a � a=L. It is obvious that (56) can be rewritten into the form of
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Wf

H
� Rn

6
�1� 3a� 1ÿ r

L

� �
: �57�

The behavior of a rigid-perfectly plastic circular plate was studied in [19]. The plate is fully
clamped around the outer boundary and subjected to impulsive loading. The dimensionless
maximum transverse displacement, which occurs at the plate center, is approximately

wf

H
� 0:84

lV2
0 L2

12M0H
: �58�

Equation (58) may be changed into the form of

wf

H
� 0:28Rn ; �59�

The dynamic behavior of a fully clamped circular plate subjected to rectangular pressure pulse
was studied in [20]. The permanent central de¯ection of the plate is

wf � u
I2L2

lM0
; �60�

where u � u�p=p0� is a function of the ratio of the magnitude of the applied load to the plastic
limit load of the plate. Equation (60) may be changed into the form of

wf

H
� 4u Rn : �61�

3.6
Circular membrane
The dimensionless ®nal displacement at the center of a circular membrane is [3]

wf

H
� 2

3

qV2
0

r0

L2

H2

� �1=2

: �62�

It is obvious that (62) can be rearranged into the following form:

wf

H
�

�����������
2

3
Rn

r
: �63�

The behavior of an impulsively loaded circular plates was examined in [21], and a more exact
theoretical membrane mode solution was obtained, which can be written in the form

wf

H
� 1:0186

2

3

qV2
0

r0

L2

H2

� �1=2

; �64�

i.e.

wf

H
� 1:0186

�����������
2

3
Rn

r
: �65�

If the strain-rate effect is considered, (63) is changed into

wf

H
� 2

3n0
Rn

� �1=2

; �66�

where
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n0 � r00
r0
� 1� V0wf

3
���
2
p

DL2

� �1=q

:

3.7
Square and rectangular plates
The dynamic response was theoretically investigated in [22] for a simply supported, rigid-
perfectly plastic square plate, side length 2L and thickness H, subjected to rectangular pressure
pulse. It is interesting to note that the results in this case are the same as those of a simply
supported circular plate, namely, the dimensionless ®nal displacement at the center of the
square plate is also represented by (44) for medium load p0 < p < 2p0, and (45) still holds for
the high load p � 2p0.

The dimensionless permanent central displacement of a fully clamped square plate with side
length 2L and thickness H under uniformly distributed impulsive loading is [3]

wf

H
�

������������������������
1� 2

3

qV2
0 L2

r0H2

s
ÿ 1 ; �67�

Thus, (67) is rewritten into the form of

wf

H
�

�����������������
1� 2

3
Rn

r
ÿ 1 ; �68�

The maximum dimensionless de¯ection of a fully clamped rectangular plate with semi-width L
and semi-length L0 subjected to impulsive loading is [23]

wm

H
�
�3ÿ n0� 1� lV2

0 L2

6M0H �3ÿ 2n0� 1ÿ n0 � 1
2ÿn0

� �h i1=2
ÿ1

� �
2 1� �n0 ÿ 1��n0 ÿ 2�� � ; �69�

where

n0 �
L

L0
tan /; tan / � ÿ L

L0
�

���������������������
3� L

L0

� �2
s

It is obvious that (69) may be rewritten into the form of

wm

H
�
�3ÿ n0� 1� 2

3 Rn�3ÿ 2n0� 1ÿ n0 � 1
2ÿn0

� �h i1=2ÿ1

� �
2 1� �n0 ÿ 1��n0 ÿ 2�� � : �70�

It is noted that n0 � 1 for square plate. In this case it is easy to see that (69) or (70) can be
reduced to (67) or (68). It should be also noted (70) can be reduced to the result of fully
clamped beam (29) when n0 � 0.

In the same manner as outlined above, the dimensionless maximum de¯ection of a simply-
supported rectangular plate with semi-width L and semi-length L0 subjected to impulsive
loading may be written as

wm

H
�
�3ÿ n0� 1� 8

3 Rn�3ÿ 2n0� 1ÿ n0 � 1
2ÿn0

� �h i1=2ÿ1

� �
4 1� �n0 ÿ 1��n0 ÿ 2�� � : �71�

By substituting n0 � 1, we can easily get the result for simply-supported square plate or simply-
supported circular plate (51). By substituting n0 � 0, we can obtain the result of simply-
supported beam, which is expressed by the second equation in (24).
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For a fully clamped rectangular plate, if the effect of strain-rate sensitivity is considered, then
the expression of theoretical dimensionless central displacement is changed from (70) to the
following form:

wm

H
�
�3ÿ n0� 1� 2

3n0 Rn�3ÿ 2n0� 1ÿ n0 � 1
2ÿn0

� �h i1=2ÿ1

� �
2 1� �n0 ÿ 1��n0 ÿ 2�� � ; �72�

where n0 is given in Eq. (66). The results for a fully clamped square plate and bearn can be
obtained by substituting n0 � 1 and n0 � 0 into above equation, respectively.

4
Discussion and conclusions
A dimensionless response number Rn is suggested herein in order to study the dynamic plastic
response and failure of structures under impulsive loading. The number is obtained by in-
troducing dimensionless equations of motion of beams and plates. From (11) and (19) it
follows that response number is the only dimensionless similarity parameter for the dynamic
plastic response of beam and plate under impulsive loading. It is not only suitable for any
boundary conditions (simply supported, fully clamped, etc.) and loading conditions (impulsive
loading, rectangular pressure pulse, dynamic loads of general shape) but also describes second-
order effects such as ®nite de¯ections, transverse shear, strain-rate sensitivity as well as dy-
namic tearing.

In order to show its ability to predict the dynamic behavior of structures under dynamic
loading, Fig. 3 illustrates the use of Rn for comparison of the experimental results with
simple rigid-plasic models, which retain ®nite-de¯ection effects for rectangular plate with
aspect ratio 0.593 [3]. By using Rn, Fig. 4 shows the comparison between experimental and

Fig. 3. Use of Rn to compare the ex-
perimental results with simple rigid-
plastic models for rectangular plate with
aspect ratio 0.593 [3] (s, h, n) experi-
mental results on aluminium 6061 T6
rectangular plate; 1 approximate in®ni-
tesimal analysis for a rigid-perfectly
plastic material; 2, 3 bounds from a rigid-
perfectly plastic analysis with ®nite de-
¯ections; 4 ®nite-de¯ection analysis with
an exact yield surface for a rigid-perfectly
plastic material

Fig. 4. Use of Rn to compare the ex-
perimental results for mild steel beams
with theoretical ones [3] (r .) experi-
mental results (Ð) rigid-perfectly plastic
analysis for a strain-rate-insensitive ma-
terial, including ®nite-de¯ection effects;
(---) rigid-perfectly plastic analysis for a
strain-rate sensitive material, including
®nite-de¯ection effects
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theoretical results for beams, which retain ®nite-de¯ection and strain-rate sensitivity
effects [3].

It is necessary to point out that the beam discussed in the present paper is with unit width. If
the width of the beam is B, the ®nal central displacements given above still hold, in this case
l � qHB, and the fully plastic bending moment is changed from M0 � r0H2=4 to
M0 � r0BH2=4.

Is the method suggested in this paper instructive for dynamic elastic response of structures?
The answer is positive, Cauchy number in (5) for this case will be used instead of damage
number. For example, the dynamic elastic buckling condition of a spherical shell [24] subjected
to uniformly distributed exterior impulsive loading can be expressed consistently to the form of
response number as

qV2
0

E

R

H

� �2

� 2

�1� m��1ÿ m� ; �73�

where m is Poisson's ratio, R and H are average radius and the thickness of the thin shell. The
dimensionless number can be termed the elastic response number Rne � Ca�R=H�2, thus, the
dynamic elastic buckling condition of a spherical shell can be understood when the elastic
response number reaches a critical value. For example, if the Poisson's ratio of the shell
material is m � 0:3, then the elastic dynamic buckling condition can be written as

Rne � 2:20 : �74�
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