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Abstract

A cylindrical cell model based on continuum theory for plastic constitutive behavior of
short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly

distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion
surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation
field of the cell is decomposed into the sum of the first order approximate field and the trial
additional deformation field. The precise deformation field are determined based on the

minimum strain energy principle. Systematic calculation results are presented for the influence
of reinforcement volume fraction and shape on the overall mechanical behavior of the com-
posites. The results are in good agreement with the existing finite element analyses and the

experimental results. This paper attempts to stimulate the work to get the analytical con-
stitutive relation of short-fiber/particle reinforced composites. # 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Various methods for the production of reinforced metal alloys have been devel-
oped in the industries and spaceflight, in order to improve the mechanical properties
of the materials and thus obtain a weight reduction in structural applications.
Metals reinforced by short-fiber/particles, e.g., SiC particles, have the advantage of
being machinable and workable using conventional processing techniques, especially
short fiber reinforcements have more favorable influence on the stiffness and elastic–
plastic tensile properties. If good fiber alignment is obtained the tensile properties
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are much improved (McDanels, 1985). Fiber alignment is often obtained during
processing by using either contracting flow or expanding flow in the extrusion. The
mechanism of strengthening and the mechanical properties of metal matrix compo-
sites have attracted a considerable number of investigations (see, for example, Li
and Ponte Castañeda, 1993; Zhu and Zbib, 1995; Kailasam and Ponte Castañeda,
1998; Llorca and González, 1998; Shu and Barlow, 2000; Wickowski, 2000; Bruzzi et
al., 2001; Chaboche et al., 2001; Carmai and Dunne, in press; Naboulsi and Pala-
zotto, in press).
Theory for determining the overall elastic properties of two-phase composites is

very well developed. Hashin and Shtrikman (1963) and Hashin (1965) have estab-
lished important results for the bounds on elastic moduli of multiphase composites
with an arbitrary phase geometry. And methods based on the Eshelby’s (1957)
solution of a single inclusion embedded in an infinite matrix have been founded, for
example, the self-consistent method (Christensen and Lo, 1979), the Mori–Tanaka
method (Mori and Tanaka, 1973), and the differential method (Boucher, 1976;
Mclaughlin, 1977).
Nonlinear behaviors of metal matrix composites have been the subject of

increased interest since 1970s (Pindera et al., 1991). Talbot and Willis (1987) devel-
oped bounds and self-consistent estimate for the effective behaviors of nonlinear
composites. A similar method for evaluating the overall properties of elasto-plastic
composites has been proposed by Teply and Dvorak (1988). Using minimum energy
principles of plasticity they derived upper and lower bounds on instantaneous stiff-
ness. Ponte Castañeda (1991) proposed a new variational procedure to obtain the
upper and lower bounds and to estimate the properties of composites. Weng and his
co-workers (Zhao and Weng, 1990; Qiu and Weng, 1991; Li and Weng, 1998) and
Hu (1996) developed an average method to predict the nonlinear constitutive rela-
tion of composite material based on the modified Mori and Tanaka procedure.
A self-consistent method was proposed by Duva (1984) and Duva and Hutchinson

(1984) based on the solution of a kernel problem, in which an isolated inclusion is
embedded in an infinite matrix of nonlinear material. This method was developed by
He (1990) and Lee and Mear (1992). An alternative self-consistent method was
proposed by Stringfellow and Parks (1991). Zhu and Zbib (1995) developed a
mathematical model capable of capturing the basic features of plastic properties of
the particulate-reinforced metal matrix composites based on a finite axisymmetric
unit cell. The predicted results of composites containing particles with sharp corners
has a comparatively large difference with experimental results.
Due to the complexity of geometry of the reinforcements and the nonlinear

mechanical behavior of the matrix, the theoretical modelling of the constitutive
relation of composites is rather difficult, and many analyses are carried out based on
the finite element method. The work of Bao et al. (1991) and Bao (1992) combined
the finite element methods with theoretical analysis, and approximated the para-
meters of the models that can reflect the effect of volume fraction and the shape of
particles. A micromechanical model was proposed by Llorca and González (1998),
in which the perfectly bonded or damaged interface was introduced in the axisym-
metric unit cell. Tvergaard (1990) analyzed the tensile properties of ductile metal

566 B. Ji, T. Wang / International Journal of Plasticity 19 (2003) 565–581



reinforced by a periodic array of short fibers assuming that the whisker ends are not
perfectly aligned but staggered (see also Levy and Papazian, 1990).
Experimental studies always give the enlightenment of the theoretical analysis and

give the basic parameters of the mathematical model. The mechanical properties of
various discontinuous reinforced aluminum composites were measured by Nieh and
Chellman (1984) and McDanels (1985). An experimental study and a detailed finite
element analyses of the tensile properties of the particle or whisker-reinforced
metal–matrix composite was investigated by Christman et al. (1989a,b).
In the present paper a cylindrical unit cell is used to analyze the tensile properties

of a metal–matrix composite reinforced by short-fibers/particles. Unlike the pre-
vious work, the cell model in this paper can simulate the composites reinforced with
short-fibers or particles with sharp corners. The results of present work are semi-
analytic and the calculating work load is much lighter compared with the FEM
method which would consume very large computing time and would not get analy-
tical results. This paper will stimulate the work, attempting to give an analytical
constitutive relation of composites reinforced with short-fibers/particles.

2. Theoretical framework

Generally the reinforcements are randomly orientated and distributed in the
composites, and the size and geometry of the reinforcements are inhomogeneous. It
is impossible to consider all of the actual factors in the model as the problem would
become rather complex and difficult. In this paper, low volume fraction of reinfor-
cement is assumed (f40.2) and the composites were idealized as uniformly dis-
tributed periodic arrays of aligned hexagonal unit cells, and each unit cell consisted
of an elastic cylindrical fiber surrounded by an elasto-plastically deforming matrix.
Under the same loading condition, each hexagonal unit cell behaved identically. A
cylindrical cell was introduced as an approximation to the hexagonal cell for com-
putational reasons, the stress or strain distribution was axisymmetric if the reinfor-
cement and the external loads were axisymmetric (see Fig. 1). The volume fraction

Fig. 1. The illuminating of the cell model.
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of the reinforcement f was taken as the ratio of the reinforcement volume to the cell
volume in the model.
Suppose that the macro elasto-plastic constitutive relation of composites can be

written as following

Eij ¼ Ee
ij þ E

p
ij ¼ Cijkl�kl þ

3

2

Ee
p

ðE
p
eÞ

Sij ð1Þ

where Cijkl is the macro elastic compliance tensor of composites, which can be easily
obtained by solving a pure elasticity problem by having the unit cell as an elastic
deformation. �kl is the macro stress tensor of the unit cell, Sij is the deviatoric part
of the macro stress, Eij;E

e
ij;E

p
ij are the macro strain, macro elastic strain and macro

plastic strain, respectively, and Ep
e ¼

2
3E

p
ijE

p
ij

� �1=2
is the macro equivalent plastic

strain. In Eq. (1), function AðEp
eÞ describes the work hardening properties of the

composites. The constitutive relation of the composites will be completely deter-
mined if function AðEp

eÞ is obtained. In this paper, our attention will focus on eval-
uating function AðEp

eÞ. Eq. (1) will describe the constitutive behavior well and truly
when composites undergoes elastic deformation or large plastic deformation. Since
the composites reinforced with particles and short fibers have isotropic macroscopic
mechanical characters (at low volume fraction of reinforcement), we assume that the
composites also obey the J2 flow theory and Mises yielding criterion in the paper.

Duva and Hutchinson (1984) have shown that the constitutive relation of com-
posites could be expressed with the macro strain energy density. The macro energy
density of composites is noted as

W ¼
1

V

Xn

k¼0;1

ð
Vk

!kdV ð2Þ

where V0 is the volume of the matrix in the composites, w0 is the strain energy den-
sity of the matrix, and Vk, wk (k50) are the volume and the strain energy density of
the kth reinforcement component, respectively.
To simplify the problem of determination of function A(Ee

p), the elastic strain in
both the matrix and the fiber was neglected, i.e. the matrix is assumed as rigid plastic
and the fiber is rigid. If the plastic deformation of composites is large enough, the
simplicity has sufficient accuracy. Matrix material obeys the following power law
equation,

�

�0
¼

"

�"0

� �n

ð3Þ

where �0 is the tensile yield stress, "0 ¼ �0=E; E is Young’s modulus and n is the
strain hardening exponent. Coefficient � is taken to be 3/7 by Ramberg and Osgood.
For multiaxial stress states, the constitutive relation takes the form
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sij ¼
2

3

�0
"e

"e

�"0

� �n

"ij ð4Þ

where "e is the effective strain.
Considering inclusion is assumed as rigid, the macro strain energy density of

composites is evaluated as

W ¼
1

V

�0ð�"0Þ
�n

n þ 1

� �ð
V0

"nþ1
e dV ð5Þ

so the macro plastic constitutive relation for the composites material is expressed as

Sij ¼
@W

@Eij
ð6Þ

The boundary condition at the outer surface of the unit cell links the macroscopic
value of the strain tensor to the microscopic displacement field through the com-
patibility requirement

ui ¼ Eijxj; at outer boundary ð7Þ

where E11=E22=� 1
2E33, the macro strain of unit cell in the analysis satisfies the

incompressible condition.
The inner boundary condition for the displacement field in the matrix, with

respect to a reference frame fixed at a point on the reinforcement, is given by

ui ¼ 0; at inner boundary ð8Þ

Let ðx1; x2; x3Þ ¼ ðx; y; zÞ be the Cartesian coordinate system with the origin
located at the cylinder center and the x3-axis coinciding with the axis of revolution,
and in the cylindrical coordinate ðx1; x2; x3Þ ¼ ðr; ’; zÞ, we define the aspect ratio of
cell and reinforcement 	 as

	 ¼
H0

R0
¼

H1

R1
ð9Þ

Since the reinforcement is short-fibers and particles, we assume 0.14w410.
For plastically incompressible matrix material under axisymmetric loading condi-

tions, a simple form of obtaining the physical components of the displacement vec-
tor u is to employ a displacement potential function 
 such that u ¼ r � ð0; 
=

ffiffiffiffiffiffi
g22

p
; 0Þ;

(see, for example, Lee and Mear, 1992), yielding

ur ¼

ffiffiffiffiffiffi
g11
g

r
@


@z
; u’ ¼ 0; uz ¼ �

ffiffiffiffiffiffi
g33
g

r
@


@r
ð10Þ
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where g11, g22, and g33 are the covariant components and g is the determinant of the
metric tensor in cylindrical coordinate system.
In this paper, we suppose that the displacement potential function is


 ¼ ð� � �Þ2ð� þ �=2Þ2 
2r2zE�=�þ 
2ðr � R0Þ
2
ðz � H0Þ

2
X1
k¼1

X1
m¼1

�kmzkrmE�

" #
ð11Þ

where factor ð� � �Þ2ð� þ �=2Þ2 was introduced to satisfy the inner boundary condi-
tion (8), and for eliminating the strain singularity at the corner 
=0, the factor 
2

was introduced. The coefficients � and � km in Eq. (11) will be fixed on later. 
 and �
were illustrated in Fig. 1, which can be expressed as


 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � R1Þ

2
þ ðz � H1Þ

2

q
ð12Þ

� ¼ arctanðr � R1; z � H1Þ ð13Þ

To obtain the solution of the strain field of the cell for a given aspect ratio, volume
fraction of reinforcement and hardening exponent of matrix, the double series in Eq.
(11) should be truncated, and the unknown coefficients �km are determined by
minimizing the plastic energy of the unit cell.
When the strain field of the unit cell is evaluated, the macro stress deviatoric ten-

sor can be derived according to Eqs. (5) and (6), and then the macro effective stress
and plastic strain relation of composites is obtained,

Se

�0
¼

Sn

�0

Ee

�"0

� �n

ð14Þ

where

Sn

�0
¼

3

2

� �ðnþ1Þ
1

V

ð
v

"̂ðnþ1Þ
e dV ð15Þ

where "e ¼ E� "̂e;E� ¼ E33 � E11 and Ee ¼
2
3 ðE33 � E11Þ. In this paper, �n

�0
is called the

strengthening factor of composites, which is an important reference coefficient to
reflect the hardening effect of the reinforcement, and noted as the function of f, n,
H0/R0,

Fðf; n;H0=R0Þ ¼
�n

�0
ð16Þ
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At last, function A(Ee
p) was obtained

AðEp
eÞ ¼ �0Fðf; n;H0=R0Þ

Ee

�"0

� �n

ð17Þ

Substituting Eq. (17) into Eq. (1), the macro constitutive relation of composites is
obtained. In addition, the macro elastic compliance Cijkl in Eq. (1) could be calcu-
lated by solving a problem of elasticity.

3. Numerical analysis and results

In the general case of cylindrical reinforcement and power law matrix, the mini-
mization of W and integration of F(f, n, H0/R0) must be performed numerically. In
both calculations, the central issue is to evaluate the integral

Ŵ ¼
1

V

ð
V

"̂ðnþ1Þ
e dV ð18Þ

Theoretically, one needs to consider a large number of terms in the series in Eq.
(11) to ensure a good quantitative accuracy, which will bring us the nonlinear pro-
blem.
In this paper, the perturbation method is used to solve the nonlinear problem.

First, the first order approximation of the displacement potential was employed,
written as


0 ¼ 
2r2zð� � �Þ2ð� þ �=2Þ2E�=� ð19Þ

A primitive displacement field of the unit cell can be obtained by substituting Eq.
(19) into Eq. (10), written as follows

ur0 ¼
T

�
½2rzðr � R1Þð2� �

�

2
Þ þ rð2zð�H1 þ zÞ þ 
2ÞT�E�

uz0 ¼ �
T

�
½2rzðH1 � zÞð2� �

�

2
Þ þ 2zðrðr � R1Þ þ 
2ÞT�E�

ð20Þ

where T ¼ ð��þ �Þ ð
�

2
þ �Þ, and � can be evaluated by

� ¼ �
1

�R2
0H0E11

ðH0

0

ð2�
0

ur0ðR0; zÞ�cos
2’R0d’dz ð21Þ

It can be proved that Eq. (20) satisfied both the external and inner boundary
conditions. So the primitive strain field "̂ij0and the primitive value of �n

�0
can be easily

calculated. An approximate analytical plastic constitutive relation of composites is
obtained.
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The macro stress–strain curve of the cell was predicted by using the approximate
constitutive relation for a representative case of f=0.1, n=0.2 and H1/R1=H0/
R0=1, i.e. the aspect ratio of the cell is taken to be equal to that of the reinforce-
ment. Llorca and González (1998) had calculated this kind of ceramic inclusion
using finite element code ABAQUS, its result was also depicted in Fig. 2. The
behavior of the reinforcement was assumed to be linear elastic and isotropic. The
matrix was modelled as an isotropically hardening elasto-plastic solid following J2
deformation theory of plasticity, which was represented by the power law equation,
i.e. � was selected as unity in Eq. (3). From Fig. 2, it can be seen that the primitive
results have an approximate accuracy to the exact FEM results, which is within
about 5%.
Since the primitive displacement can provide an approximate stress–strain relation

of the unit cell, a more accurate description of the displacement field can be obtained by
introducing the additional terms in displacement potential which is given as follows,


~ ¼ 
2ð� � �Þ2ð� þ �=2Þ2ðr � R0Þ
2
ðz � H0Þ

2
X1
k¼1

X1
m¼1

�kmzkrmE� ð22Þ

The perturbation method is used in determining the coefficients �km in the trial
displacement field and strain field of the unit cell under the minimum energy prin-
ciple.
The normalized strain of the unit cell can be written as

"̂ij ¼ "̂ij0 þ�"̂ij ð23Þ

then we can get

"̂2ij ¼ "̂2ij0 þ 2"̂ij0�"̂ij þ ð�"̂ijÞ
2

ð24Þ

and

"̂nþ1
e ¼ "̂nþ1

e0 1þ
4

3

"̂ij0�"̂ij

"̂2e0
þ
2

3

�"̂ij�"̂ij

"̂2e0

� �nþ1
2

ffi "̂nþ1
e0 1þ

2

3
ðn þ 1Þ

"̂ij0�"̂ij

"̂2e0
þ

n þ 1

3

�"̂ij�"̂ij

"̂2e0
þ

n2 � 1

8

4

3

"̂ij0�"̂ij

"̂2e0

� �2
" #

ð25Þ

Substituting Eq. (25) into Eq. (18), and evaluating the partial derivative of Ŵ with
respect to �km,

@Ŵ

@�km
¼

1

V

ð
"̂nþ1

e0

2ðn þ 1Þ

3
ð
"̂ij0

"̂2e0

@�"̂ij

@�km
þ
�"̂ij

"̂2e0

@�"̂ij

@�km
Þ þ

4ðn2 � 1Þ

9

"̂ij0�"̂ij

"̂2e0

"̂ij0

"̂2e0

@�"̂ij

@�km

� 

d�

ð26Þ
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Let the above equation be equal to zero, and we get the linear equations about
�km,

@Ŵ

@�km
¼ 0 ð27Þ

The displacement and strain field of the unit cell could be obtained by solving the
linear equations, and the value of �n

�0
is obtained according to Eq. (15). Since Eq.

(27) is a linear equation, the computing work load is very light. In this paper, all the
computing is done by engaging math software Mathematics 3.0.
The results presented below were obtained with k=1,...K and m=1,...M, where

K=8 and M=8. In the procedure of calculations, convergence studies were carried
out and those studies indicated that the results to be presented are accurate to within
approximately 1%. For the sake of the accuracy of the calculation, the Newton–
Raphson method was employed to check the perturbation method also.
The stress–strain curve of the cell with multi-terms in the displacement field mode

(which we call fine results) is compared with the primitive result and the FEM results
of Llorca and González (1998), these curves are plotted in Fig. 2. From Fig. 2, it can
be seen that the fine result is fairly close to the FEM results and the primitive results
are indeed an approximation of the fine results which are within in about 5%, so the
analytical constitutive relation could be founded based on the primitive results. It is
noted that neither the present analyses nor the computations in Llorca and Gonzá-
lez (1998) have accounted for residual stress resulting from thermal contraction
mismatch between fibers and the matrix. Although these residual stresses will result
in early onset of plasticity locally, it is not expected that they will significantly
change the shape of the tensile.

Fig. 2. Stress and strain curve of the unit cell, predicted fine results and primitive results compared with

FEM results of Llorca and Gonzalez (1998), (f=0.1).
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The role of inclusion shape on the macroscopic response of the two-phase com-
posites is examined first for dilute concentrations of inclusions. The change in �n

�0
due

to the presence of the inclusions serves as a measure of the strength effect of the
inclusions, the larger the magnitude of this quantity, the greater the strength pro-
vided by the inclusions. This quantity is plotted in Fig. 3 as a function of logarithm
of aspect ratio H0/R0 of fiber for several hardening exponents. Fig. 3 shows the
effect of the fiber reinforcement aspect ratio H0=R0 on the strengthening factor �n

�0
for both prolate and oblate fibers, a large logðH0=R0Þ

�� �� always indicates a shape far
away from the unit cylinder. As can be seen from Fig. 3, fibers with large shape
index logðH0=R0Þ

�� �� (i.e. whisker or disks) exhibit much more reinforcement than that
of unit cylinders. The figure also shows that prolate cylinders are more effective than
oblate ones in strengthening the matrix, which is also observed by Lee and Mear
(1992), Bao et al. (1991) and Yang et al. (1991). For example, when f=0.2 and
n=0.2, the change in �n

�0
due to the prolate cylinder fiber with an aspect ratio of 5, is

2.45 times larger than that provided by the unit cylindrical fiber. In addition to
providing insight into the role of inclusion shape on the strength of two-phase
composites, the tensile stress–strain relation curve was presented in Fig. 4(a)–(c).
The stress and strain are normalized by �0 and "0, respectively, and the coefficient �
in Eq. (3) was selected as 3/7. These curves described the role of matrix nonlinearity
on the mechanical behaviors of the composites.
The predicted stress and strain curve and the experimental results of whisker

reinforced composites for H0/R0=H1/R1=5 are plotted in Fig. 5. For this case, the
composite parameters are given by f=0.13, and n=0.1305. It is observed that the
present result is qualitatively in good agreement with the experimental results of
Christman et al. (1989a), but quantitatively higher by about 10%, as shown in Fig. 5.

Fig. 3. Strengthening effect of the aspect ratio of fiber/particle reinforcement on the strength of compo-

sites.
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Fig. 4. (a) Tensile stress–strain curve for a matrix material reinforced by short fiber with unit aspect ratio and

f=0.2, present results compared with the results by Bao et al. (1991); (b) tensile stress–strain curve for a matrix

material reinforced by aligned short fiber with aspect ratio H0/R0=0.2 and f=0.2, present results compared

with the results of Bao et al. (1991); (c) tensile stress–strain curve for a matrix material reinforced by aligned

short fiber with aspect ratioH0/R0=5 and f=0.2, present results compared with the results of Bao et al. (1991).
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The fiber reinforcements of material tested are randomly distributed and neighbour
fibers are expected to be shifted relative to one another, both in the axial and transverse
directions, maybe with a partial overlap between the fibers ends. It is the mechanism
that causes the difference between the predicted results and experimental results.
A uniform distribution of aligned cylindrical particles, whose diameter equals

their height, are far more effective reinforcing agents than spherical particles (Bao et
al., 1991). At lower volume fraction the unit cylindrical particles (H1/R1=1) are
approximately twice as effective as spherical particles at the same volume fraction,
otherwise the volume of the smallest sphere which circumscribes the unit cylinder is
1.89 times that of the unit cylinder. In other words, the unit cylinder has almost the
same effect as a spherical particle whose surface just circumscribes the cylinder.
Fig. 6 shows the predicted results of this paper compared with the results of Zhu and
Zbib (1995) and the experimental results of Nieh and Chellman (1984). From Fig. 6,
it can be seen that whiskers can be modeled more accurately with the cylindrical cell
model than the spherical cell model. This conclusion also agrees with results of Yang
et al. (1991). The test results of Nieh and Chellman (1984) show that the hardening
exponent of composites is remarkably higher than that of unreinforced matrix due
to working process, so in the calculations, the hardening exponent of the matrix is
selected as the same as that of composites, to consider the increase of the hardening
exponent of the matrix during the process.

Fig. 5. Predicted uniaxial stress–strain curves for 2124 Al-SiC whisker reinforced composites compared

with experimental and FEM results by Christman et al. (1989a,b).
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It is emphasized that the absolute strength of the composites due to the inclusions
is strongly dependent upon the strain hardening exponent, and the calculation
results were depicted in Figs. 7 and 8. From Fig. 7, it can be seen that strengthening
factor �n

�0
almost linear in n (f<0.2), and the larger the volume fraction of inclusion,

the steeper of the slope of the line. Fig. 8 shows that the degree to which the com-

Fig. 6. Predicted uniaxial stress strain curves for particle reinforced composites compared with results of

spherical cell model (Zhu and Zbib, 1995) and the experimental results of Nieh and Chellman (1984) on

1100 Al–SiC composites containing particles with sharp corner.

Fig. 7. Strengthening factor as a function of strain hardening exponent at a series of volume fraction of

fiber reinforcement.

B. Ji, T. Wang / International Journal of Plasticity 19 (2003) 565–581 577



posite strength depends upon inclusion shape is itself a function of matrix non-
linearity. And the effect of inclusion shape on the composites become more pro-
nounced as the hardening exponent increases.

4. Discussion

A cell model to analyze the influence of microstructural factors on the mechanical
response of short fibers/particles reinforced metal–matrix composites is developed in
this paper. The work hardening function A(Ee

p) was determined from the behavior of
the unit cell using an isostrain approach in which the elastic strains were neglected.
The plastic constitutive relation of fiber/particle reinforcement composites was
established based on the cell model. The calculation results predicted by this model
were proved by experimental results and finite element method results. It was con-
cluded that the constitutive relation of fiber/particle reinforcement composites was
dominated by the strain hardening exponent of matrix, the volume fraction and the
aspect ratio of reinforcement. The cylindrical cell model can describe the mechanical
behavior of short fiber or particle reinforced composites better than the spherical cell
model.
We remark that since the elasticity of the matrix material and the inclusions have

been neglected in determining the function A(Ee
p), the constitutive relations which

have been developed are expected to apply on the condition of the plastic strain
within the matrix are sufficiently large, and the predicted results will be appreciated.
One might argue that a lack of consideration of local effects due to size scale of the

Fig. 8. Strengthening factor as a function of logarithm of aspect ratio (H0/R0) of fiber reinforcement at a

series of strain hardening exponent of composites matrix.
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microstructure limits the usefulness of the model. Nevertheless, these generally good
results in the paper suggest that the model can be effective in appropriate situations.
Finally, it should be indicated that the computing work load in this paper is much

lighter than the FEM method although many terms of the displacement mode were
selected in the calculations, as the perturbation method is employed in solving the
nonlinear problem. The predicted constitutive relation of composites by primitive
displacement field mode has been proved that it has approximate in 5% accuracy
compared with the fine results with multi-terms displacement. Based on the primi-
tive results of the constitutive relation of composites, an analytical constitutive
relation of composites could be founded, which is very valuable to material scientists
or engineers. However, further works should be done contributing to completed and
perfect results.
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