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Calculations of longitudinal and transverse velocity structure functions
using a vortex model of isotropic turbulence
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The longitudinal structure function~LSF! and the transverse structure function~TSF! in isotropic
turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and
Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex
radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of
isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF.
Also observed are differences between longitudinal and transverse structure functions caused by
intermittency. These differences are related to their scaling differences which have been previously
observed in experiments and numerical simulations. ©1999 American Institute of Physics.
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I. INTRODUCTION

One of the central challenges in fluid turbulence is
understand velocity structure functions. Velocity structu
functions are defined as moments of the velocity differen
~or velocity increments! between two points in a turbulen
field. The longitudinal structure functions~LSFs! are the mo-
ments of the differences in the velocity components wh
are in the same direction as the separation vector betwee
two points. The transverse structure functions~TSFs! are the
moments of the differences in the velocity compone
which are transverse to the separation vector between
two points. In Kolmogorov’s 1941 paper on isotrop
turbulence,1 the probability distribution functions of the ve
locity differences between two points were assumed to
independent of coordinate translations and invariant with
spect to rotations and reflections of the coordinate syste
Therefore, tensorial moments of velocity differences are
mogeneous and isotropic. Using dimensional analysis, K
mogorov argued that the velocity structure functions
scale invariant in the inertial subrange and he obtained
linear scaling exponents of the LSFs.

Since Kolmogorov’s 1941 paper, much work has be
done on the calculation of velocity structure functions. D
to experimental constraints, most of the work was focused
the LSFs by invoking Taylor’s hypothesis. Experiments a
direct numerical simulation~DNS! have revealed that th
scaling exponents of the LSFs deviate from Kolmogoro
prediction of linear scaling. The deviations from the line
scaling exponents are a measure of the intermittency of

a!Author to whom correspondence should be addressed. Telephone:
667-0174; Fax: 505-665-3003; electronic mail: ghe@t13.lanl.gov
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LSFs. ~See the review by Sreenivasan and Antonia.2! Only
recently has it become feasible to calculate reliably ot
components of velocity structure functions, due to the
vances in experimental technology and computer capabi
Several experimental studies and DNS3–12 have been carried
out to determine the TSFs. Most of these results3,6,7,9–12

agree that there exist significant differences between sca
exponents of LSFs and those of TSFs for moment ord
higher than three. The TSFs exhibit more intense interm
tency than the LSFs. However, there also exist some dif
ent conclusions,4,5,8 which argue that the differences of sca
ing exponents in experiments and DNS violate the isotro
constraint and attribute to the effects to finite scaling rang13

A minimal condition for isotropic turbulence is that th
scaling exponents for the second-order LSF and TSF mus
the same. It is known that inertial range isotropy can only
obtained for flows with high Reynolds numbers. The existi
DNS can only reach moderate Reynolds numbers, where
minimal condition is hardly satisfied. Therefore, theoretic
calculations of LSFs and TSFs using various models of i
tropic turbulence are of great interest.

The purpose of this paper is to propose a vortex mo
and use it to calculate velocity structure functions. In Sec.
a vortex model combining Burgers and Rankine vortices
constructed for isotropic turbulence. Using this model,
derive the related LSFs and TSFs in Sec. III and calcu
their scaling exponents in Sec. IV. Finally, we discuss
results and briefly present our conclusions.

II. A COMBINED VORTEX MODEL FOR ISOTROPIC
TURBULENCE

The basic idea in vortex models of fluid turbulence
that the statistics of turbulence can be calculated usin

05-
3 © 1999 American Institute of Physics
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stochastic distribution of various vortices, subject to the
quired probability density distributions. If vortex solutions
the Navier–Stokes equations specify the essential physic
turbulence and if the vortex distributions resemble the sta
tics of the observed vortices, the vortex models can reas
ably describe the statistics of turbulence. Using vortex m
els, one can calculate velocity structure functions
ensemble-averaging various vortex solutions. In Synge
Lin’s pioneering work,14 Hill’s spherical vortex was used to
calculate the LSFs and TSFs of second order. Since H
vortex is inviscid and steady, it is more appropriate for larg
scale rather than small-scale statistics. A more appropr
vortex solution for small-scale statistics is the Burge
vortex.15 It describes the properties of filaments which a
the most intermittent structures at small scales
turbulence.16,17

The velocity field of the Burgers vortex is composed o
nonrotational strain background field and a field induced b
localized vortex filament. In cylindrical coordinates (r ,u,z),
the background straining velocity field,vB,b , has the follow-
ing form:

vB,b5~2ar,0,2az!, ~1!

where the strain rate,a, is a positive constant. The localize
vortex filament is assumed to be aligned with thez axis and
has the vorticity

v5~0,0,vz~r !!, vz~r !5
G

pr b
2 exp~2 r̂ 2!, ~2!

where r b5(2n/a)1/2 is the vortex radius,G is the vortex
circulation,v is the viscosity andr̂ 5r /r b . The velocity as-
sociated withv, vB, f , has only an azimuthal component

vB, f5~0,vu,0!, uu5
G

2pr b

12exp~2 r̂ 2!

r̂
. ~3!

The total velocity for the Burgers vortex isvB5vB,b1vB, f .
Each Burgers vortex can be characterized by two par

eters: the vortex radiusr b and the vortex strengthG. The
latter defines the vortex Reynolds number,RG5G/v. As-
suming thatRG and r b have uniform distributions, Saffma
and Pullin calculated the LSFs.18 Their results have a satis
factory inertial range for even order LSFs and a limited
ertial range for odd order LSFs. An exponential probabil
density function~PDF! for RG has been proposed recently b
Hatakeyma and Kambe19

P~RG!5
C3

2
RG

2 exp~2CRG!, ~4!

whereC5(3/4p)Rl
1/2 andRl is the Taylor–Reynolds num

ber. The LSFs obtained from their calculation show go
agreement with experimental and DNS results. Follow
Hatakeyma and Kambe’s assumption, we have further ca
lated TSFs, but the TSFs obtained do not demonstrate s
factory inertial range scalings.

A filament can be also modeled by a Rankine vortex20

The Rankine vortex is a uniform rectilinear filament in ide
flows, which is composed of rotational and irrotational pa
The vorticity is assumed to be aligned in parallel straig
Downloaded 06 Jun 2008 to 159.226.100.195. Redistribution subject to AI
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vortex lines, for example, along thez axis in a cylindrical
coordinate system. The induced velocity fieldsvR

5(0,vR,u,0) only have an azimuthal component

vR,u5H G

2r R
2 r r<r R ,

G

2r
, r .r R ,

~5!

whereG is the circulation andr R is the core radius. Kambe
and Hosokawa were the first to use the Rankine vor
model to calculate the first and third LSFs and their resu
were impressive.21 It has been known that the Rankine vo
tex is an exact solution of the Navier–Stokes equation in
limit of vanishing viscosity. Therefore, it is an approxim
tion to the concentrated vortices in turbulence at very h
Reynolds number. It is the tube-like concentrated vortex t
dominates the most intermittent structures and contribu
greatly to the singular scaling exponents. This singular s
ings reflect nonsmooth or discontinuities of velocity in t
limit of vanishing viscosity.

Turbulent flows consist of many different types of e
dies. It is a belief that the statistics of small-scale structu
in fully developed turbulence might be modeled in terms o
random distribution of different vortices. Instead of using
single type of vortex, we propose that isotropic turbulence
modeled by ensembles ofvarious typesof vortices. In this
paper, we suggest that the turbulent velocity fields might
described by a combination of random distribution of Bu
gers vortices and Rankine vortices. Assuming a random
tribution of Burgers and Rankine vortices, we calculate
statistics of turbulence by using an ensemble average
these vortices. LetQ(vB) andQ(vR) be the contributions to
the velocity from the Burgers and the Rankine vortices,
spectively. Then, the total velocity is a probability sum
Q(vB) andQ(vR): u5Q(vR)1Q(vB). In the simplest case
the total velocity can be considered as a linear combina
of these two vortices in the sense of statistics

u5vB1lvR , ~6!

wherel is a probability weighting factor.l depends on the
ratio of the background field’s dissipation to the induc
velocity field’s dissipation.l also depends on the ratio be
tween the Rankine vortex core radius and the Burgers vo
radius. Therefore, the total velocity in the combined vort
model of Burgers and Rankine vortices~BR! is

uu5vR,u1lvB,u , ur52ar, uz52az. ~7!

The statistics of isotropic turbulence can be calcula
using an ensemble average of the velocities in Eq.~7!. The
reason for using this BR model is that neither the Burg
vortex model nor the Rankine vortex model exhibits acce
able scalings for TSFs in the inertial ranges. Moreover, th
two models separately do not satisfy the minimal condit
for isotropic turbulence.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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III. FORMULATIONS OF VELOCITY STRUCTURE
FUNCTIONS

In this section, we derive the LSFs and the TSFs for
BR vortex model. Fixing a reference pointp5(r ,u,z) in the
cylindrical coordinate system, the Cartesian coordinatesp
are

x5r cosu, y5r sinu,z. ~8!

The relative position of another pointp8 to p can be ex-
pressed using spherical coordinates (l ,z,f) centered atp,
where z is the polar angle andf is the azimuthal angle
Thus, the Cartesian coordinates ofp8 are

x85x1 l cosf sinz,

y85y1 l sinf sinz, ~9!

z85z1 l cosz.

The unit vector l5( l 1 ,l 2 ,l 3) of pp8 is
(cosf sinz,sinf sinz,cosz).

Denoting the velocity differences between the two poi
p and p8 asdul[u(p)2u(p8), we can calculate the longi
tudinal and transverse velocity increments:dul

L5(dul• l) l
and dul

T5dul2(dul• l) l. Thus, their magnitudes aredul
L

5udul
Lu anddul

T5Adul
T
•dul

T. For the purposes of numerica
evaluation of the magnitudes, we nondimensionalize
magnitudes using (en)1/4

du
l̂

L
5S RG

2

32p2 13D 21/4F& l̂ ~3 cos2 z21!

1
RG

2&p
r̂ S v̂u~ r̂ 8!

r̂ 8
2

v̂u~ r̂ !

r̂ D sinz sinfG , ~10!

wheree[^n/2(]ui /]xj1]uj /]xi)
2& is the dissipation rate

l̂ 5 l /r b is the dimensionless separation,r̂ R5r R /r b is the di-
mensionless core radius, and

l̂ 85Ar̂ 21 l̂ 2 sin2 z12r̂ l̂ sinz cosf,

v̂u~ r̂ !5
12exp~2 r̂ 2!

r̂
1l v̂R,u~ r̂ !, ~11!

v̂R,u~ r̂ !5a r̂ , r̂< r̂ R ; a
r̂ R

2

r̂
, r̂ . r̂ R ,

a5S RG
2

32p2 13D 21/4 RG

2&p
. ~12!

Similarly, the magnitudes of the transverse velocity inc
ments can be written as follows:

du
l̂

T
5S RG

2

32p2 13D 21/4

Adw1
21dw2

21dw3
2,

dwi5(
j 51

3

wj~d i j 2 l i l j !,
Downloaded 06 Jun 2008 to 159.226.100.195. Redistribution subject to AI
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w152& l̂ cosf sinz2
RG

2&p
F v̂u~ r̂ 8!

r̂ 8
~ r̂ sinu

1 l̂ sinf sinz!2 v̂u~ r̂ !sinuG ,
~13!

v252& l̂ sinf sinz1
RG

2&p
F v̂u~ r̂ 8!

r̂ 8
~ r̂ cosu

1 l̂ cosf sinz!2 v̂u~ r̂ !cosuG ,
w352& l̂ cosz,

r̂ 85Ar̂ 21 l̂ 2 sinz12r̂ l̂ sinz cos~f2z!.

We note that the transverse velocity increment is not a co
ponent but an absolute value in this paper.

The ensemble averages^•& in this paper are defined a
spatial averages and probabilistic averages. The spatial a
ages are integrations over all possible orientations and lo
tions. The probabilistic averages are the integrals, over gi
probability density functions of vortex Reynolds numbe
and the vortex radii, see Eqs.~15! and ~16!.

In the DNS by Jimene´z et al.17 and the experiments by
Belin et al.,22 the PDF of vortex Reynolds numbers,P(RG),
and the PDF of vortex radii,P( r̃ b), have been found to hav
exponential forms. We assume that the vortex Reyno
numbers have the exponential distribution~4!. Fitting the
data from Belin’s experiments at higher Reynolds number22

we obtain:

P~ r̃ b!5Er̃b
2 exp~2 r̃ b

0.7!. ~14!

HereE215*0
` r̃ b

2 exp(2r̃ b
0.7)dr̃b is a normalization constan

and r̃ b5r b /h whereh is the Kolmogorov scale. Hereafte
we will use the tilde to denote those quantities nondim
sionalized by the Kolmogorov lengthh.

From Eqs.~10!, ~13!, ~4!, and ~14!, the nth order LSFs
sn

L( l̃ ) and TSFssn
T( l̃ ) can be written as follows:

sn
L~ l̃ !5E

0

`

P~ r̃ b!dr̃bE
0

`

P~RG!dRGE
0

R̃0
dr̃E

2p

p

df

3E
0

p

dz
r̃ sinz

2pR̃0
2

~du
l̃ / r̃ b

L
!n, ~15!

sn
T~ l̃ !5E

0

`

P~ r̃ b!dr̃bE
0

`

P~RG!dRGE
0

R̃0
dr̃E

2p

p

dfE
0

p

dz

3E
2p

p

du
r̃ sinz

4p2R̃0
2

~du
l̃ / r̃ b

T
!n. ~16!

IV. NUMERICAL INTEGRATION OF THE LSF AND THE
TSF

In numerical evaluation of the BR model, there are thr
undetermined parameters: The weight factorl, ratio of radii
of two vortices r̂ R and the integration upper limitR̃0 . The
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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weight factor and ratio of radii of two vortices can be re
sonably fixed uniquely by using the constraints of isotro
turbulence. They are chosen so that the basic constraint
isotropic turbulence are satisfied: The scaling exponent
the second-order LSF and TSF are equal and the sca
exponent of the third-order LSF is equal to one. The integ
tion upper limit R̃0 is determined by the constraint that e
semble averages of dissipation and enstrophy must be e
Therefore,l50.15, r̂ R50.95, R̃0512.5. The radius of the
Rankine vortex is assumed to be related to that of the B
gers vortex. This assumption leads to a more concentr
vortex distribution near the vortex core. Since the radii
two types of vortices are related, the rate of straining of
background field has an effect on the Rankine vortex as w
The increase of Taylor–Reynolds number changes the le
of the inertial range but does not change the scalings
practical calculations,Rl is chosen to be 1290.

A second-order trapezoidal numerical integration w
used to evaluate Eqs.~15! and~16!. We used 30 mesh point
for each integration. Doubling the number of mesh points
not change the results reported here.

In Fig. 1, we plot the second-order LSF and TSF
functions of the separations in log–log coordinates. Both
found to have nearly the same scaling exponents:t2

L50.72
andt2

T50.71. Therefore, the proposed BR vortex model s
isfies the minimum requirement for isotropic turbulence. W
also calculate the second-order LSF and TSF of the Bur
and Ranking vortex model, respectively. For the Burg
vortex model, the scaling exponent of the second-order L
is larger than that of the second-order TSF, whereas, for
Rankine vortex model, the scaling exponent of LSF is l
than that of the TSF. The Rankine vortex has a smaller c
tribution to the LSFs but a larger contribution to the TSF
This can be seen from Eqs.~15! and ~16!.

In Fig. 2, we present the third-order LSF and TSF. Th
scaling exponents are approximately equal to unity. The
fore, the BR model satisfies the basic constraint of isotro
turbulence.

In Fig. 3, thenth-order LSFs and TSFs forn54, 6, 8,

FIG. 1. The second-order transverse~L! and longitudinal~h! velocity
structure functions as functions of the separation,l. The solid line is for
; l 0.72 and the dashed line is for; l 0.71. The inset shows the transvers
velocity structure function vs the longitudinal velocity structure functio
The bullets indicate the inertial range.
Downloaded 06 Jun 2008 to 159.226.100.195. Redistribution subject to AI
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and 10 are shown. It is observed that there exist two sca
ranges. The first scaling range corresponds to the dissipa
range and the second scaling range corresponds to the
tial range. To compare the scaling exponentstn

L andtn
T of the

LSFs and the TSFs in the inertial range, we plotsn
T versussn

L

for n56, 8 in Fig. 4. It is easy to see that their slopes are l
than unity, which indicates different scaling exponents
finite inertial ranges.

The scaling exponentstn
L andtn

T can be evaluated usin
linear regression of the LSFs and TSFs. In Fig. 5,tn

L andtn
T

are plotted and compared with the results from DNS. Qu
tatively, they show that thetn

L are larger than thetn
T for n

.2.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have discussed the velocity struct
functions using a combined vortex model~BR!. The vorticity
field in the BR model is composed of Burgers and Rank
vortices. The second-order velocity structure functions of
BR model can be shown to satisfy the minimal condition
isotropic turbulence. Their LSFs and TSFs exhibit satisf
tory scalings and demonstrate a transition from the diss

FIG. 2. The third-order transverse~L! and longitudinal~h! velocity struc-
ture functions as functions of the separation,l. The solid line and dashed line
are for; l .

FIG. 3. The transverse velocity structure functions as functions of the s
ration l, for n54,6,8,10 from bottom to top. The inertial range is within th
two dotted lines. The inset shows similar relations for the longitudinal str
ture functions.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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tion range to the inertial range. However, neither the Burg
nor the Rankine vortex model satisfies the isotropic con
tion. Actually, neither the TSFs from the Burgers vort
model nor the LSFs from the Rankine vortex model exh
an acceptable inertial range. The anomalous scaling is
result of vortex intermittency. Our model contains strong
intermittent filaments and nonuniform spatial distributions
vortices. Both of them make contributions to the anomalo
scaling.

The present results show significant differences betw
the high-order (n.4) scaling exponents for the LSFs an
TSFs. However, the scaling of the fourth-order LSF see
not much different from the corresponding TSF which is
agreement with experimental measurements by Aradet al.23

This suggests that the high-order LSFs and the TSFs h
different intermittent intensities, associated with intermitte
structures. The most intermittent structures in isotropic t
bulence have been observed to be filaments in DNS
experiments.24–28The filaments can be described mathema
cally using Burgers and/or Rankine vortices,16 which have
different intermittent intensities. The BR model contai
strong intermittent filaments and a nonuniform spatial dis
bution of vortex intensities. Both of them make contributio
to the anomalous scaling. From Eqs.~15! and ~16!, the con-

FIG. 4. The relative scaling of the sixth-order transverse structure func
vs the sixth-order longitudinal structure function. The inset shows the r
tive scaling for the eighth-order quantities. The bullets indicate the ine
range quantities and the slopes of dotted lines are unity.

FIG. 5. Scaling exponents of the velocity structure functions.
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tributions of the Burgers and Rankine vortices to the LS
differ significantly from their contributions to the TSFs. It
this difference that produces the different scaling expone
of the LSFs and the TSFs. This conclusion is supported
recent results:7,9 The intermittent parameters in the hierarc
models are different for velocity structure functions of lo
gitudinal and transversal directions.

In principal, the present model is not only valid for finit
Reynolds number, but also for infinite Reynolds numb
However, only finite Reynolds numbers are accessible to
merical integrations. Calculations can only be done for la
but finite Reynolds number. Therefore, our conclusions
valid for large enough Reynolds number but not for infin
Reynolds number. In actual turbulence and turbulent simu
tions, the observed vortex structures have a variety of for
The current model is an over-simplified model of turbulen
However, since the BR model captures the underlying ph
ics of the intermittent structures, such as vortex filaments
provides some understanding of different scaling expone
of isotropic fields.
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