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Evolution-induced Catastrophe and its Predictability

YU-JIE WEI,1 MENG-FEN XIA,1,2 FU-JIU KE,1,3 XIANG-CHU YIN1,4 and
YI-LONG BAI1

Abstract—Both earthquake prediction and failure prediction of disordered brittle media are
difficult and complicated problems and they might have something in common. In order to search for
clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model
resembling disordered brittle media are examined. It is found that the failure manifests evolution-
induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage
to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-spe-
cificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar
to the question of predictability of earthquakes. However, our model shows that strong stress
fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues
for earthquake forecasting.

Key words: Evolution-induced catastrophe, sample-specificity, stress fluctuations, earthquake pre-
diction, predictability.

1. Introduction

Earthquake prediction, the contemporary scientific challenge, is drawing more
and more attention. This is mainly due to two factors: the importance of earth-
quake prediction and the difficulty of the problem.

Currently, it seems that efforts to identify deterministic precursors of earth-
quakes have been mostly unsuccessful. This arouses the discussion of whether an
earthquake is predictable or not (GELLER et al., 1997). We still believe that
earthquakes do have some incubating phase, although it seems still to be quite far
beyond our knowledge. With many intriguing but fragmentary observations of
possible precursory phenomena, people are frustrated again and again. Therefore,
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perhaps we should seek alternative approaches to earthquake forecasting and seek
sound bases for the approaches. If we assert that an earthquake is unpredictable
now, we may throw the baby out with the bath water! (BOWMAN and SAMMIS,
1999).

Actually, recent investigations have highlighted the key role of the heterogeneity
of the crust and the nonlinear evolution of aggregations in the nucleation of
earthquakes. The lithosphere of the solid earth can be regarded as a hierarchy of
blocks with different length scales, from major tectonic plates to grains of rocks,
which are interlinked by weak boundary zones or interfaces (TURCOTTE, 1992).
‘‘This implies that exact predictions are not possible. But it does not imply that
earthquakes cannot be predicted (forecast) with considerable accuracy ’’ (TURCOTTE,
1999). In fact, precursory clustering of earthquakes was investigated in terms of an
aggregation model of crack growth and ultimate fusion on a multiplanar earth-
quake fault system with nonlinear rheology (YAMMASHITA and KNOPOFF, 1992).
Other interesting attempts to understand earthquake forecasting in a nonlinear
heterogeneous system include the stress release model (VERE-JONES, 1978), cellular
automaton model (SORNETTE and SAMMIS, 1995; SAMMIS and SMITH, 1999),
particle-based lattice solid model (MORA and PLACE, 1999), load/unload response
ratio (YIN et al., 1995), and so on. Therefore, the complexity of earthquake
prediction seems to be rooted in the nonlinear evolution of systems with disordered
heterogeneity on multiple scales.

Aimed at such a class of heterogeneous materials whose failure is a nonlinear
evolution, we construct a model based on brittle fracture. In comparison with
earthquakes, there are two similar features (BAI et al., 1994a,b; XIA et al., 1996a,b,
1997; KE et al., 1998):

1. Evolution-induced catastrophe (EIC). The failure usually exhibits an abrupt
transition from globally stable accumulation of damage (GS) to catastrophic
failure.

2. Sample-specificity. There may be a great diversity in catastrophe thresholds, i.e.,
catastrophic failure shows different behaviors sample-to-sample under identical
macroscopic conditions. This leads to uncertainty of macroscopic failure.
In this paper a statistical analysis is performed for a simple nonlinear dynamical

model of damage and failure, which demonstrates evolution-induced catastrophe
and sample-specificity. Next an approach to distinguish the two phases of nonlinear
evolution, namely, from GS to EIC is explored. The results show that the
magnitude of fluctuations in the governing stress field appears to be a possible
precursor of EIC. This may indicate that statistical warning signs in fluctuations
before catastrophic failure may shed a light on earthquake forecasting.

The next section will introduce a nonlinear dynamical model of damage and
failure called the coupled-pattern model. Thereafter, its evolution-induced catastro-
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phe and sample-specificity will be discussed. Finally, we try to explore precursors of
the eventual failure.

2. Coupled-pattern Model

Consider a macroscopic system consisting of mesoscopic units. The system
should be described by patterns mesoscopically. They are the pattern of material
properties, the pattern of damage and the pattern of the governing stress field. The
behavior of the system can be simulated by coupled-evolution of these patterns.

As an example, we consider a ring model (one-dimensional chains with periodic
boundary condition) with N units (XIA et al., 1994).

(1) Patterns

After denoting the strength of unit i by sci, the pattern of material properties is
expressed by Sc={sci, i=1, 2, . . . , N}. In order to take heterogeneity into ac-
count, the values of sci are assumed to be random in the chain, but follow a
distribution function f(sc). We take the average strength s) c=	0

�scf(sc) dsc=1. A
sample is specified by its pattern Sc mesoscopically. Then, samples with identical
distribution functions f(sc) are identical macroscopically.

The damage pattern is denoted by X={xi, i=1, 2, . . . , N}, where xi=0 for an
intact unit and xi=1 for a broken unit. Macroscopically, the system is described by
the damage fraction.

p=
1
N

%
N

i=1

xi. (1)

It is interesting to examine the damage process with increasing stress. The stress
pattern S={si, i=1, 2, . . . , N}, where si is the ratio of the current stress on unit
i to s̄c. Macroscopically, the governing parameter is the nominal stress s0 given by

s0=
1
N

%
N

i=1

si. (2)

There are two levels which describe damage evolution as shown in Table 1.

Table 1

Description for meso-macro le6els

Material property StressDamage

Strength pattern Sc Stress pattern SMeso-patterns Damage pattern X
Nominal stress s0Damage fraction pMacro-parameters Distribution of strength f(sc)
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(2) Load-sharing Rules

The stress pattern S is determined from the damage pattern X according to
load-sharing rules, which describe how the nominal stress of broken units is to be
transferred to nearby intact units. Formally, the load-sharing rules can be expressed
by ‘‘interactions’’ between intact units and broken units. For simplicity, we adopt
a model in which the interaction is equal to the summation of intact-broken pair
interactions. In this way, the stress on unit i can be given by

si= (1−xi)
�

1+ %
j" i

xia(�i− j �)ns0 (3)

where a(�i− j �) is the contribution of unit j to unit i and depends on the ‘‘distance’’
�i− j �. From equations (2) and (3), a(�i− j �) satisfies

p=
1
N

%
i

%
j

(1−xi)xja(�i− j �) (4)

where only the contributions of terms with i" j are included, because (1−xi)xj=0
as i= j.

In the following, we examine three types of the contribution function a, which
roughly cover all possible stress redistributions.

Rule I: Global mean field
This is the simplest load-sharing rule,

a=
1

N(1−p)
. (5)

Then,

si=
s0

(1−p)
. (6)

The stress is uniformly shared by all intact units. This is a rule without stress
fluctuations.

Rule II: Local interactions

a(�i− j �)=!const for �i− j �5D
0 otherwise

. (7)

This rule depends on a fixed local scale D. As D�N, the model approaches the
global mean field model.

Rule III: Cluster load-sharing
This is a type of local mean field model with a cutoff due to broken clusters. A

broken cluster consists of l connecting broken units with intact units at its two
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sides. The nominal stress of a broken cluster is shared by its two neighboring intact
clusters equally. A uniform stress distribution is assumed for each intact cluster.
Thus, a unit in an s-intact cluster separating an l- and an r-broken cluster supports
a stress

s=
�

1+
l+r
2s

�
s0. (8)

In this rule, local scale is determined by the local pattern of damage. Therefore,
there may be multiple scales during the course of damage evolution. Then, the
evolution shows a nonlocal feature essentially (without a characteristic scale).

Generally, for rules II and III, the stress pattern S depends on the details of the
damage pattern X, and there are stress fluctuations in the system. The stress
fluctuations play an essential role in damage and failure.

(3) E6olution Dynamics

The evolution of damage in the system with disordered heterogeneity is very
complicated. In order to investigate the universal behavior of such kind of
nonlinear system, we introduce simplified dynamics as follows:

For a sample specified by a strength pattern Sc={sci, i=1,2, . . . , N}, the
evolution of the damage pattern X={xi, i=1,2, . . . , N} is governed by the stress
pattern S={si, i=1,2, . . . , N} according to the dynamics:

xi(t+1)=xi(t)+Dxi(t) (9)

where

Dxi(t)=S(si(t)−sci), i=1,2, . . . , N (10)

and

S(y)=
!1, for y]0

0, for yB0
(11)

where t is the ordinal number. At each step, as pattern X changes, pattern S must
be redetermined from the new pattern X according to the specified load-sharing
rule. This is to say, the stress pattern S and the damage pattern X evolve in a
coupled way. From equations (1) and (9), we can obtain a ‘‘time series’’ of the
damage fraction p(t).

For a sample with an initially intact pattern X(0)={xi(0)=0, i=1,2, . . . , N},
as the nominal stress s0 increases from s0=0 slowly, the first damage event will
occur at a value of s0=s0

(1), depending on distribution function f(sc). Keeping
s0=s0

(1), the system will evolve and approach an equilibrium pattern X (1) (with
damage fraction p (1)). As s0 increases, the above procedure repeats. Subsequently,
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Figure 1
Equilibrium damage fraction p as a function of imposed nominal stress s0 (with identical distribution
functions f(sc)). I. Globally mean field; II. Cluster load-sharing rule, N=20,000; III. Cluster load-
sharing rule, N=2000; IV. Local interaction, D=2, N=2000; V. Local interaction, D=100, N=2000.

we can obtain a series of stresses s0
(k), equilibrium damage fractions p (k) and

equilibrium damage patterns X (k). Eventually, failure will occur at s0=s0
(kf )=s0f.

3. E6olution-induced Catastrophe and the Difficulty of Prediction

Figure 1 shows the equilibrium damage fraction p as a function of the imposed
nominal stress s0, based on various load-sharing rules, as s0 increases quasi-stati-
cally. The strength distribution function f(s0) adopted is a Weibull distribution

f(sc)=mbs c
m−1 exp(−bs c

m) (12)

with m=2 and b=1 (then s̄c=1). We also examined cases for various f(sc). It is
found that the system exhibits the following common behaviors.

(1) E6olution-induced catastrophe

The evolution of the system manifests two different modes: globally stable (GS)
and evolution-induced catastrophic (EIC). There is a catastrophic threshold s0f for
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each sample. When s0Bs0f, the sample shows a stable accumulation of damage,
called the globally stable mode (GS). This means that there are equilibrium
patterns X with damage fraction pB1 according to prescribed stresses s0.
However, at s0=s0f, the sample turns to catastrophic failure abruptly. This
is to say, there are no equilibrium patterns with pB1 and the sample will go
to failure (p=1) unavoidably. This is called evolution-induced catastrophe
(EIC). EIC is one of the fundamental modes of failure. s0f (and the relative
damage fraction pf) indicates the point of transition from the GS to the EIC
mode.

(2) Sample-specificity

In the simulation, the samples with identical strength distribution function
f(sc) are regarded as identical samples macroscopically, however their mesoscopi-
cally disordered heterogeneity is specified by the strength pattern Sc. The failure
behavior of a system following the global mean field rule is uniquely determined
by function f(sc). From equation (6), the equilibrium condition for specified s0

is given by equation p=	s0/(1−p)
0 f(sc) dsc and the failure threshold s0f can be

deduced. That is to say, the macroscopically identical samples display identical
behavior regardless of their mesoscopic details.

However, for samples with mesoscopic disorder and following load-sharing
rules other than the global mean field rule, the macroscopic behavior, shows a
clear difference sample-to-sample. Especially, there is a great diversity in
catastrophic threshold s0f for the macroscopically identical samples. This distinct
feature is called the sample-specificity of EIC. Sample-specificity results in uncer-
tainty of material failure macroscopically.

(3) Strength distribution

The distribution function of the catastrophic threshold W(s0f) (shown in Fig.
2) can provide a probabilistic prediction of the catastrophe. For samples follow-
ing the global mean field rule, there is a distinct failure strength s0f (Fig. 2). The
macroscopic behaviors (p vs. s0 curves in Fig. 1) under other load-sharing rules
deviate from that of the global mean field model. Catastrophe thresholds s0f for
both global interaction and cluster load-sharing rules are usually considerably
lower than that given by the global mean field model, and show a greater
diversity (see Fig. 2).

Due to the sample-specificity of catastrophic failures, the macroscopic pre-
diction of failure cannot be deterministic as in the global mean field model.
Consequently, it is clear that the strengths of samples are statistically meaning-
ful. This is helpful for material sciences, however not sufficient for rupture
prediction.
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4. Warning Signs of Catastrophe

From the distinct differences in strength distributions, for the global mean field
rule and the two other rules we are aware that the stress fluctuations play an
essential role in evolution-induced catastrophe and sample-specificity. The main
effects of stress fluctuations are as follows:
1. A significant reduction of catastrophe threshold from that derived from the

global mean field model (Figs. 1 and 2).
2. The sample-specificity, especially the great diversity of catastrophe thresholds

(Figs. 1 and 2).
The stress fluctuations can be measured by ds/s̄, where

ds=
� 1

N(1−p)
%
N

i=1

(si− s̄)2(1−xi)
n1/2

(13)

is standard deviation of stress on intact units in the system, and

s̄=
s0

1−p
(14)

is the mean stress of intact units.
Figure 3 delineates the stress fluctuations ds/s̄ as a function of p (the data are

collected from the processes shown in Fig. 1). From Figure 3(a), we can see that,
in the GS regime, the system remains in a state with a low level of stress
fluctuations (B1), nonetheless the fluctuations strengthen with increasing p. As the

Figure 2
Statistical distribution function of the catastrophic threshold W(sf). — Globally mean field; ---- Cluster
load-sharing rule, N=20,000; ···· Cluster load-sharing rule, N=2000; ---- Local interaction, D=2,

N=2000.
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system turns to the EIC regime at s0=s0f(p=pf), the stress fluctuations become
considerably stronger than that in the GS regime. Figure 3(b) shows similar
behavior. For the local interaction model with sufficiently large D (see Fig. 3(c)), the
behavior should approach that given by the global mean field model, and the stress
fluctuations will remain at a low level.

Although it is impossible to find a deterministic criterion for catastrophic failure
macroscopically due to sample-specificity, the above-mentioned results provide
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Figure 3
Stress fluctuation ds/s̄ as a function of the damage fraction p. (a) Cluster load-sharing rule, N=20,000;

(b) Local interaction, D=2, N=2000; (c) Local interaction, D=100, N=2000.

clues to failure forecasting statistically. In this way we could possibly provide
statistical warning signs based on an ensemble analysis. Let uGS be the maximum of
stress fluctuations ds/s̄ in the GS regime and uEIC be that in the EIC regime. The
ensemble distributions PGS(u) and PEIC(u)are shown in Figure 4. From Figures
4(a), 4(b) and 4(c), we can see that the distribution functions PGS(u) and PEIC(u)
are well separated from each other. Thus, statistically, we can set up a warning level
of stress fluctuations to forecast the occurrence of catastrophic failure. For the local
interaction model with sufficiently large D (say D=100 for N=2000, see Fig.
4(d)), the distribution functions PGS(u) and PEIC(u) overlap each other. However,
in this case, the behavior of the system is close to that of the global mean field
model and failure prediction can be made from a deterministic criterion (see Fig. 1).

5. Discussion

The prediction of catastrophe is a problem of the first importance for engineer-
ing and natural hazards. However prediction is very difficult, especially for hetero-
geneous media like the crust. This is mainly due to the nonlinear evolution far from
equilibrium and the catastrophic failure exhibited as a cascade from smaller scales
to larger ones. Even in the EIC regime, there may be no significant signs in the
initial stage of the catastrophic mode. The characteristics of catastrophe become
visible only after it is enhanced strongly during nonlinear evolution. Secondly, due
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to sample-specificity, there is no deterministic, macroscopic criterion for catastrophe.
However, for a system with disordered heterogeneity on multiple scales, it is usually
impossible to secure a detailed description mesoscopically. Furthermore, sample-spe-
cificity implies that there is a sensitive link between macroscopic and mesoscopic
scales. In other words, the macroscopic behaviors of a system may be sensitive to
subtle details on mesoscopic scales. Consequently, an approach to failure prediction
based upon statistical averages may be insufficient and may even be inappropriate.

In order to overcome the difficulty resulting from sample-specificity, we must find
some delicate features which can be adopted to distinguish the GS and EIC
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Figure 4
Statistical distribution function of maximum stress fluctuation uGS and uEIC in the GS and EIC regimes,
respectively. D: P(uGS) 2: P(uEIC). (a) Cluster load-sharing rule, N=20,000; (b) Local interaction,

D=2, N=2000; (c) Local interaction, D=10, N=2000; (d) Local interaction, D=100, N=2000.

modes. Statistically, monitoring the fluctuations of the governing stress field in a
sample may be a possible approach as discussed in the previous section. The
important feature is that the fluctuations of the governing stress field will statistically
be enhanced to a higher level as the evolution mode transits from the GS to EIC.
Therefore, as the fluctuations of the governing field go beyond a warning level, we



Evolution-induced Catastrophe 1957Vol. 157, 2000

could note that the evolution of the system is entering EIC mode and catastrophic
failure may occur. This approach might provide clues for earthquake prediction.
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