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Determining the mechanical properties at micro- and nanometer length scales using nanoindentation or
atomic force microscopy is important to many areas of science and engineering. Here we establish
equations for obtaining storage and loss modulus from oscillatory indentations by performing a nonlinear
analysis of conical and spherical indentation in elastic and viscoelastic solids. We show that, when the
conical indenter is driven by a sinusoidal force, the square of displacement is a sinusoidal function of time,
not the displacement itself, which is commonly assumed. Similar conclusions hold for spherical
indentations. Well-known difficulties associated with measuring contact area and correcting thermal drift
may be circumvented using the newly derived equations. These results may help improve methods of
using oscillatory indentation for determining elastic and viscoelastic properties of solids.
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Atomic force microscopy and nanoindentation tech-
niques developed in the past two decades have become
powerful tools for measuring mechanical properties at
micro- and nanometer length scales for ceramics, metals,
polymers, and biomaterials [1–23]. These force micros-
copy techniques can be operated in either quasistatic [1–
12] or oscillatory modes [11–23]. In the oscillatory mode,
a sinusoidal force is typically superimposed on a quasi-
static load on the indenter [11–23]. The indentation dis-
placement response and the out-of-phase angle between
the applied harmonic force and the corresponding har-
monic displacement may be recorded at a given excitation
frequency or multiple frequencies. A number of authors
[11–17] have proposed analysis procedures for determin-
ing the complex Young’s modulus E��!� � E0�!� �
iE00�!�, where E0�!� is the storage modulus and E00�!� is
the loss modulus, from oscillatory indentations using the
following equations:
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where � is Poisson’s ratio, S is contact stiffness, C is
damping coefficient, and A is contact area between the
indenter and the sample. Several authors [11,12,14–17]
have developed models for contact stiffness and damping
coefficient. Applying these equations to an ideal indenter
with infinite system stiffness and zero mass, the contact
stiffness and damping coefficient are given by S �
j�F=�hj cos� and C! � j�F=�hj sin�, where �F is
the amplitude of sinusoidal force with angular frequency
!, �h is the amplitude of oscillatory displacement, and �
is the phase angle of the displacement response. Thus, by
measuring displacement amplitude and phase angle under
harmonic oscillation, the reduced storage and loss modulus
E0=�1� �2� and E00=�1� �2� can be obtained from
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In this Letter, we show that Eq. (2) is the result of a linear
approximation of the oscillatory indentation. By perform-
ing a nonlinear analysis, we derive the corresponding set of
equations without evoking the small amplitude oscillation
assumption. We begin with oscillatory conical indentation
in purely elastic solids, then in viscoelastic solids, and end
with oscillatory spherical indentation in viscoelastic solids.

We consider a rigid, smooth, and frictionless conical
indenter with half-angle � indenting a purely elastic solid
[Fig. 1(a)]. The well-known load-displacement relation is
given by [24]

 h2 �
��1� �2�

2E tan�
F: (3)

Equation (3) is valid for both increasing and decreasing
loads since purely elastic solids respond to time-varying
loads instantaneously. Thus, Eq. (3) is also valid for oscil-
latory loading and unloading. We consider a sinusoidal
load superimposed on a step load Fm:

 F�t� � Fm � �F sin�!t�; (4)

where �F and ! are the amplitude and angular frequency
of the sinusoidal load, respectively. The displacement is
then given by

 h2�t� �
��1� �2�

2E tan�
Fm

�
1�

�F
Fm

sin!t
�
: (5)

Clearly, the square of the indenter displacement h2�t�, not
the displacement itself, is a sinusoidal function. Let
h2�t� � h2

m � �2h sin�!t�, where h2
m and �2h are the re-
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spective square displacement and the amplitude of the
oscillatory square displacement; we obtain a pair of equa-
tions:

 h2
m �

��1� �2�

2E tan�
Fm; (6)
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Equation (6) is a restatement of Eq. (3), which represents
the static response due to Fm. Equation (7) describes the
dynamic response due to the oscillatory component of load
�F. Since �F is known, the reduced modulus E=�1� �2�
can be obtained by measuring the amplitude of the square
displacement �2h.

We now show that Eq. (2) is a linear approximation of
Eq. (7) for oscillatory conical indentation in purely elastic
solids. Making the commonly used assumption that the
displacement is a sinusoidal function of time, i.e., h�t� �
hm � �h sin�!t�, where hm and �h are the respective
displacement and displacement amplitude, we obtain, in
the linear approximation, �2h � 2hm�h. Using the fact
that, for conical indentation in elastic solids [24], hm�t� �
��=2�hc�t�, a � hc tan�, and A � �a2, where hc, a, and A
are the respective contact depth, contact radius, and contact
area [Fig. 1(a)], we see that Eq. (7) becomes
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When the amplitude of displacement oscillations is small,
i.e., �h=hm 	 1, the contact area is approximately inde-
pendent of displacement oscillation amplitude. Equa-
tion (8) is then identical to Eq. (2) when it is applied to
purely elastic solids, since � � 0 and E � E0.

The difference between nonlinear analysis and linear
approximation can be demonstrated by comparing the
h2�t� and h�t� for various oscillation amplitudes �F=Fm.
According to the nonlinear analysis [Eq. (5)], h�t� can be
written, in linear approximation, as

 happrox�t� �

�����������������������������
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2E tan�
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1

2
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Figures 2(a) and 2(b) plot h2�t�=f
��1� �2�=2E tan��Fmg
vs time for �F=Fm � 0:5 and 0.8 for both linear and
nonlinear cases. As expected, the results from nonlinear
analysis and linear approximation are very similar when
�F=Fm < 0:1. However, the discrepancy increases with
�F=Fm. When the oscillation amplitude is large, the
displacement is no longer sinusoidal, but the square of
displacement is. Furthermore, we note �2h �
�1=2�
happrox

2�max� � happrox
2�min��. Thus, the square am-

plitude can be obtained by measuring the peak happrox�max�
and valley happrox�min� of oscillations in the linear plot of
h�t� vs t.

We now perform nonlinear analysis of oscillatory coni-
cal indentation in viscoelastic solids. The solid may be
described by the constitutive relationships [25] between
deviatoric stress and strain sij and dij and between dilata-
tional stress and strain �ii and "ii:
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FIG. 2. Comparison of nonlinear analysis and linear approxi-
mation for oscillatory indentation with ! � 1 in elastic solids:
h2�t�=f
��1� �2��=2E tan�gFm vs time for �F=Fm � 0:5 (a)
and 0.8 (b).

FIG. 1. A schematic illustration of oscillatory (a) conical and
(b) spherical indentations.
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where J1�t� is the shear compliance and J2�t� is the volu-
metric compliance. The shear and volumetric compliances
are related to the relaxation modulus in shear G�t� and
relaxation modulus in dilatation K�t�. The time dependent
Young’s modulus and Poisson’s ratio are given by E�t� �

9K�t�G�t��=
3K�t� �G�t�� and ��t� � 
E�t�=2G�t�� � 1,
respectively. In the following, we assume that Poisson’s
ratio is time independent. Consequently, J1�t� and � are
sufficient to describe the viscoelastic behavior.

With force as the independent variable, the relationship
between displacement h�t� and force F�t� is given by
[26,27]:

 h2�t� �
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4 tan�
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d�: (11)

We consider a harmonic force superimposed on a quasi-
static force, i.e.,

 F�t� � Fmf�t� � �F sin�!t�; (12)

where f�t� is a monotonically nondecreasing function of
time jf�t�j � 1. Inserting Eq. (12) into (11) and using the
definition of the storage and loss shear compliances,
J0�!� � !

R
1
0 J1�s� sin�!s�ds and J00�!� �

�!
R
1
0 J1�s� cos�!s�ds, we obtain
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Equation (13) implies that

 h2�t� � B�t� � �2h sin�!t���; (14)

where � is the phase shift. Comparing Eq. (14) with
Eq. (13) and using the relationship [25] between the com-
plex modulus E� and the complex shear compliance J�,
i.e., E0 � 2�1� ��
J0=�J02 � J002�� and E00 � 2�1� ��
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On the other hand, if we use the common assumption
that the displacement is a sinusoidal function of time, i.e.,
h�t� � hm�t� � �h sin�!t�  �, where hm and �h are the
respective displacement and displacement amplitude, then
in the linear approximation, we have �2h � 2hm�t��h,

 � �, and
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Equation (17) is analogous to that derived recently by Lu
and co-workers for spherical indentation in viscoelastic
solids [23]. By further assuming that hm�t� � ��=2�hc�t�
when �h	 hm�t�, a � hc tan�, and A � �a2, we trans-
form Eq. (17) to Eq. (2). From this derivation, it is evident
that Eq. (2) is a linear approximation of Eq. (16).
Furthermore, Eq. (2) assumes that hm�t� � ��=2�hc�t�
holds during oscillatory indentation, which is not true for
large magnitude unloading [10] or oscillations [23].

To further illustrate the differences between linear and
nonlinear analysis, we consider a sinusoidal oscillation
superimposed on a step loading. The nonlinear and linear
relationships obtained from Eq. (13) are then given by
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where jJ��!�j �
����������������������������������
J0�!�2 � J00�!�2

p
is the magnitude of

the complex compliance and the phase angle is given by
cos� � J0=jJ�j and sin� � J00=jJ�j. Unlike the purely
elastic case where �F=Fm determines the amplitude of dis-
placement oscillation, the parameter �FjJ��!�j=FmJ1�t�
affects the amplitude of oscillation and nonlinearity for
the viscoelastic case. Since J��!� and J1�t� depend on the
frequency and time, the amplitude of displacement os-
cillation and nonlinearity are also functions of frequency
and time. Similar to the purely elastic case, �2h �
�1=2�jh2

approx�max� � h2
approx�min�j.

The same approach can be applied to spherical inden-
tation in viscoelastic solids. With force as the independent
variable, the relationship between h�t� and F�t� is given by
[26,27]:

 h3=2�t� �
3�1� ��

8
����
R
p

Z t
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dF���
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where R is the radius of the spherical indenter [Fig. 1(b)].
Substituting Eq. (12) into Eq. (110) for a harmonic force
superimposed on a quasistatic force, we observe that
h3=2�t�, not h�t�, is a sinusoidal function of time, i.e.,

 h3=2�t� � B�t� ��3=2h sin�!t���; (140)

where� is the phase shift and �3=2h is the amplitude of the
oscillatory component of h3=2�t�. In particular, we find
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Thus, by measuring � and �3=2h, the reduced storage and
loss modulus can be obtained from oscillatory spherical
indentation using Eq. (160).

Similar to the conical indentation case, if we use the
common assumption that the displacement is a sinusoidal
function of time, i.e., h�t� � hm�t� ��h sin�!t�  �,
then in the linear approximation, we have �3=2h �

�3=2��hh1=2
m and  � �. Equation (160) becomes
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Equation (170) is equivalent to that derived recently by Lu
and co-workers [23]. Equation (170) becomes Eq. (2) since
the contact area A � �Rh for small amplitude spherical
indentation in elastic and viscoelastic solids.

The above results are derived by assuming that Eqs. (11)
and (110) are applicable to oscillatory indentation in vis-
coelastic solids. Although Eqs. (11) and (110) were derived
under the condition of monotonically increasing contact
area with time [26,27], our recent work [7–10] has shown
that Eqs. (11) and (110) can be applied to initial unloading
for conical and spherical indentation in viscoelastic solids,
respectively. A recent paper by Lu and co-workers [23]
suggested that Eq. (170) derived from Eq. (110) under the
assumption of small amplitude oscillations is indeed a very
good approximation for spherical indentation in viscoelas-
tic solids.

The results from nonlinear analysis may have significant
ramifications on how to use oscillatory indentation to
determine the storage and loss modulus of viscoelastic
solids. The results from the linear approximation
[Eqs. (2), (17), and (170)] show that either the contact
area A or indenter position hm must be measured in order
to obtain the storage and loss modulus. There are, however,
well-known difficulties in measuring the contact area
[1,2,9–12]. Furthermore, both the contact area and the
absolute position of the indenter are affected by thermal
drift during measurements. In contrast, Eqs. (7), (16), and
(160) derived from nonlinear analysis do not require the
measurement of the contact area or the absolute position of
the indenter, thus removing significant difficulties associ-
ated with contact area measurement and thermal drift.
Instead, the amplitude of the square (or 3=2 power) dis-

placement �2h (or �3=2h) and phase angle � should be
measured to obtain the storage and loss modulus from
oscillatory conical (or spherical) indentations using
Eq. (16) [or Eq. (160)] for elastic and viscoelastic solids.
While these equations are not limited to very small ampli-
tude oscillations, their advantages over that of linear ap-
proximation [Eqs. (17) and (170)] are apparent even for
small amplitude oscillatory indentations. The results from
the nonlinear approach to oscillatory indentation should,
therefore, help improve methods of using oscillatory in-
dentation for determining mechanical properties of a vari-
ety of materials, ranging from polymers, composites, and
biomaterials.
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