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Abstract

The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered.

The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and

Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress ®elds are

obtained. Investigated are the in¯uence of material nonhomogeneity and orthotropy on the dynamic stress intensity

factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient

and/or increasing the shear modulus in a direction perpendicular to the crack surface. Ó 1999 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The so-called Functionally Gradient Material
(FGM) has revived the interest in solving boundary
value problems with crack-like discontinuity. The
nonhomogeneity of the elastic body is assumed to
depend on the coordinates while the resulting
equations could still be solved analytically. While
such an approach has been used to solve nonho-
mogeneous elasticity problems in the past, they did
not receive the attention as in recent years because
of the advent of composites such that FGMs could
now be made and used in applications. Materials
possessing functionally graded nonhomogeneity
and containing cracks have been studied exten-
sively [1] for the isotropic case. They include both
nonhomogeneity in the axial and radial direction

while the crack con®guration includes the penny-
shaped and ¯at elliptical crack. Solution to a class
of problems for anti-plane shear and in-plane ex-
tension can be found in [1]. Depending on the na-
ture of nonhomogeneity, stress singularity other
than the inverse square root type was found. Be-
cause of the techniques used to process the FGMs,
they are seldom isotropic. A plasma spray tech-
nique would usually lead to a lamellar structure
while electron beam vapor deposition can be used
to yield a highly columnar structure. It is therefore
necessary to consider the anisotropic character of
the FGMs. The Mode I static crack problem in an
nonhomogeneous orthotropic medium has been
analyzed [2]. An exponential form was used. In
what follows, the torsional impact of a penny-
shaped crack in a transversely isotropic FGM is
considered. The objective is to obtain the local
dynamic stress ®eld and to examine the e�ects of
material nonhomogeneity and orthotropy.
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2. Material property model

Assumed in the FGM model are di�erent vari-
ations of the shear modulus. In [1], both types
l�z� � l0jzjm�m > 0� and l�z� � l0�c� jzj�m�c 6� 0�
have been assumed, where m can be positive and
negative in the latter case. In the former case, if
m 6� 0 the order of the stress singularity was found
to depend on �1ÿ m�=2 [1], while the singularity
for radial nonhomogeneity of the same functional
form is the same as the homogeneous material.
The cases for l�y� � l0�1� cjyj� and l�y� � l0

exp�cy� were considered in [3±5], respectively.
Consider an unbounded orthotropic function-

ally graded material as shwon in Fig. 1. The co-
ordinates r and z are assumed to be the principal
axes of orthotropy. The shear moduli lr and lz are
assumed to be functions of z only, and vary pro-
portionately as

lr�z� � �lr�0�1� ajzj�2; �1�

lz�z� � �lz�0�1� ajzj�2; �2�
where a is a constant �a > 0�; �lr�0 and �lz�0 are
the shear moduli at z � 0.

3. Problem formulation

Fig. 1 considers a penny-shaped crack of di-
ameter 2a. It is embedded in a functionally graded
material and lies in the z � 0 plane. The solid ex-
tends to in®nity in all directions. In cylindrical
polar coordinates �r; h; z�, the displacements are
denoted ur; uh and uz. For the present problem, we
have

ur � uz � 0; uh � uh�r; z; t�; �3�
where t is time. The nonvanishing stress compo-
nents shz and srh are

shz � lz
ouh

oz
; srh � lr

ouh

or

�
ÿ uh

r

�
; �4�

where the shear moduli lr and lz are assumed to
vary according to Eqs. (1) and (2).

Two of the equations of motion are identically
satis®ed and the remaining one gives

o2uh

or2
� 1

r
ouh

or
ÿ uh

r2
� lz�z�

lr�z�
o2uh

oz2
� l0z�z�

lr�z�
ouh

oz

� q
lr�z�

o2uh

ot2
: �5�

Prime denotes derivative. The mass density is q
being a constant.

Suppose that the material is initially at rest. At
time t� 0, a shear linearly proportional to r, is
applied suddenly to crack surfaces and maintained
constant thereafter. This is equivalent to a torque.
Hence, the boundary conditions are

shz�r; 0; t� � ÿs0H�t�r=a; 06 r < a; t > 0; �6�

uh�r; 0; t� � 0; r P a; t > 0; �7�

where H�t� is the Heaviside unit step function.

4. Integral equation

The Laplace transform of f �t� is

f ��p� �
Z 1

0

f �t�eÿpt dt �8�

whose inversion is

f �t� � 1

2pi

Z
Br

f ��p�e pt dp: �9�

The Bromwich path of integration is denoted by
Br which is a line on the right-hand side of the
p-plane and parallel to the imaginary axis. Ap-
plying the transform Eq. (8) to Eq. (5) results in
the transformed equationFig. 1. Penny-shaped crack in transversely isotropic FGM.
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o2u�h
or2
� 1

r
ou�h
or
ÿ u�h

r2
� lz�z�

lr�z�
o2u�h
oz2
� l0z�z�

lr�z�
ou�h
oz

� qp2

lr�z�
u�h: �10�

Because of the symmetry, it su�ces to consider
only the upper half-space z > 0. Moreover, con-
sider the pair of Hankel transforms of the ®rst
order,

V �s; z; p� �
Z 1

0

u�h�r; z; p�J1�sr�r dr; �11�

u�h�r; z; p� �
Z 1

0

V �s; z; p�J1�sr�s ds; �12�

where J1� � is the Bessel function of the ®rst kind.
Application of Eq. (11) to Eq. (10) yields

lz�z�
lr�z�

o2V �s; z; p�
oz2

� l0z�z�
lr�z�

oV �s; z; p�
oz

ÿ s2

�
� qp2

lr�z�
�

V �s; z; p� � 0: �13�

Substituting Eqs. (1) and (2) into Eq. (13), results
in

o2V �s; z; p�
oz2

� 2a
1� az

oV �s; z; p�
oz

ÿ S2

"
� qp2

�lz�0�1� az�2
#

V �s; z; p� � 0; �14�

where S � s
�����������������������lr�0=�lz�0

p
: By de®ning

X � S�1� az�; Y � �1� az�1=2V ; �15�
Eq. (14) can be rewritten as

d2Y
dX 2
� 1

X
dY
dX
ÿ 1

a2

�
� b2

X 2

�
Y � 0; �16�

where

b �
�����������������������
1

4
� qp2

�lz�0a2

s
: �17�

Eq. (16) is a modi®ed Bessel di�erential equation.
From the solution of Eq. (16) and considering the
regularity condition at z!1, the solution of
Eq. (14) can be expressed as

V �s; z; p� � A�s; p��1� az�ÿ1=2Kb �1
�
� az� S

a

�
;

�18�

where Kb� � is the modi®ed Bessel function of the
second kind.

Substituting Eq. (18) into Eq. (12), the result is

u�h�r; z; p� �
Z 1

0

A�s; p��1�az�ÿ1=2Kb �1� az� S
a

� �
� J1�sr�s ds: �19�

From Eq. (19), the Laplace transform of the
stresses shz and srh are obtained:

s�hz�r; z; p� � ÿlz�z�
Z 1

0

A�s; p�

� a
2
�1

�
� az�ÿ3=2Kb �1

�
� az� S

a

�
ÿ S�1� az�ÿ1=2K 0b �1

�
� az� S

a

��
J1�sr�s ds;

�20�

s�rh�r; z; p� � lr�z�
Z 1

0

A�s; p��1� az�ÿ1=2Kb

� �1
�
� az� S

a

�
sJ 01�sr�
�

ÿ J1�sr�
r

�
s ds; �21�

where prime denotes derivative. In the Laplace
transform domain, the boundary conditions on the
plane z � 0 become

s�hz�r; 0; p� � ÿ
s0r
pa
; 06 r < a; �22�

u�h�r; 0; p� � 0; r P a: �23�

From Eqs. (19), (20), (22) and (23), a pair of dual
integral equations are obtained asZ 1

0

B�s; p�J1�sr� ds � 0; r P a; �24�

Z 1

0

sB�s; p�G�s; p�J1�sr� ds � s0r
�lz�0pa

;

06 r < a; �25�
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where

B�s; p� � sA�s; p�Kb
S
a

� �
; �26�

G�s; p� �
a
2
Kb

S
a

ÿ �ÿ SK 0b
S
a

ÿ �
sKb

S
a

ÿ � : �27�

The dual integral Eqs. (24) and (25) can be solved
by applying the method in [6], which has been
extensively used for the case of homogeneous
materials with cracks [7] and for the case of layered
composites with cracks [8]. The solution of Eqs.
(24) and (25) is given by

B�s; p� � 4s0a5=2

3�lz�0p
������
2p
p ��

s
p

�
Z 1

0

���
n

p
U��n; p�J3=2�san�dn; �28�

where U��n; p� should satisfy the Fredholm inte-
gral equation of the second kind

U��n; p� �
Z 1

0

U��n; p�M�n; g; p�dg � n2: �29�

The kernel function M�n; g; p� in Eq. (29) is com-
puted from

M�n; g; p� �
�����
ng

p Z 1

0

s G
s
a
; p

� �h
ÿ 1
i

� J3=2�sn�J3=2�sg� ds: �30�
The Fredholm integral equation of the second
kind in Eq. (29) can be solved numerically.

5. Dynamic stress intensity factor

The Laplace transform of the dynamic stress
intensity factor can be extracted from the asymp-
totic expansion of the stresses around the crack tip
in the Laplace transform domain.

Integration of B�s; p� in Eq. (28) by parts gives

B�s; p� � 4s0a3=2

3�lz�0p
������
2p
p 1��

s
p
�
ÿ U��1; p�J1=2�sa�

�
Z 1

0

1���
n
p J1=2�san� d

dn
�nU��n; p��dn

�
:

�31�

From Eqs. (31), (26), (20) and (21), it is found that

s�hz�r; z; p� �
4s0a3=2lz�z�
3�lz�0

������
2p
p

����������
�lr�0
�lz�0

s
U��1; p�

p

�
Z 1

0

ÿ ��
s
p �1� az�ÿ1=2K 0b �1� az� S

a

� �
Kb

S
a

ÿ �
� J1=2�sa�J1�sr�ds� � � � ; �32�

s�rh�r; z; p� �
4s0a3=2lr�z�
3�lz�0

������
2p
p U��1; p�

p

�
Z 1

0

ÿ ��
s
p �1� az�ÿ1=2Kb �1� az� S

a

� �
Kb

S
a

ÿ �
� J1=2�sa�J 01�sr�ds� � � � �33�

Note that the in®nite integrals are convergent ev-
erywhere except at the singular points which oc-
cupy the crack edge. Since the solution near the
edge is desired it is necessary to evaluate the un-
bounded portions of these integrals in the neigh-
bourhood of the singular points. Note that the
integrals are ®nite and continuous for any given
values of s, the divergence of the integrals at the
crack edge corresponds to s!1. Carrying out
the expansion for large s and considering the fol-
lowing asymptotic behavior of Kb�x� and K 0b�x�
when x!1,

Kb�x� �
�����
p
2x

r
eÿx 1

�
�O

1

x

� ��
; �34�

K 0b�x� � ÿ
�����
p
2x

r
eÿx 1

�
�O

1

x

� ��
; �35�

the lower-order terms of the stresses are

s�hz�r; z; p� �
4s0alz�z�
3p�lz�0

����������
�lr�0
�lz�0

s
U��1; p�

p
�1� az�ÿ1

�
Z 1

0

sin�sa� exp�ÿSz�J1�sr� ds

� 4s0a
3p

����������
�lr�0
�lz�0

s
U��1; p�

p
�1� az�

�
Z 1

0

sin�sa� exp�ÿSz�J1�sr� ds; �36�
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s�rh�r; z; p� �
4s0alr�z�
3p�lz�0

U��1; p�
p

�1� az�ÿ1

�
Z 1

0

sin�sa� exp�ÿSz�J0�sr� ds

� ÿ 4s0a
3p
�lr�0
�lz�0

U��1; p�
p

�1� az�Z 1

0

sin�sa� exp�ÿSz�J0�sr� ds: �37�

De®ne c � �����������������������lr�0=�lz�0
p

, the integrals in Eqs. (36)
and (37) are evaluated:Z 1

0

sin�sa� exp�ÿSz�J1�sr� ds

� Im

Z 1

0

exp�is�a
�

� icz��J1�sr� ds
�

� Im
1

r
1

0B@
264 � i�a� icz������������������������������

r2 ÿ �a� icz�2
q

1CA
375; �38�

Z 1

0

sin�sa� exp�ÿsz�J0�sr� ds

� Im

Z 1

0

exp�is�a
�

� icz��J0�sr�ds
�

� Im
1�����������������������������

r2 ÿ �a� icz�2
q

264
375: �39�

Note that r � a� r1 cos h1; z � r1 sin h1 and near
the crack tip r1 � a, this results inZ 1

0

sin�sa� exp�ÿSz�J1�sr� ds

� 1���������
2r1a
p Re

1���������������������������������
cos h1 ÿ ic sin h1

p" #
�O�r0

1�;

�40�Z 1

0

sin�sa� exp�ÿSz�J0�sr� ds

� 1���������
2r1a
p Im

1���������������������������������
cos h1 ÿ ic sin h1

p" #
�O�r0

1�:

�41�
The polar coordinates r1 and h1 are de®ned in
Fig. 1.

Substituting Eqs. (40) and (41) into Eq. (30), the
local stress ®eld is obtained:

r�hz�r1; h1; p� � K�III�p����������
2pr1

p Re
1���������������������������������

cos h1 ÿ ic sin h1

p" #
�O�r0

1�; �42�

r�rh�r1; h1; p� � K�III�p����������
2pr1

p Re
ic���������������������������������

cos h1 ÿ ic sin h1

p" #
�O�r0

1�: �43�
The Laplace transform of the dynamic stress in-
tensity factor K�III�p� in Eqs. (42) and (43) is

K�III�p� �
����������
�lr�0
�lz�0

s
4

3p
s0

������
pa
p U��1; p�

p
; �44�

in which U��1; p� is the value of U��n; p� evaluated
at the crack edge corresponding to n � 1.

The dynamic stress intensity factor in the time
domain is

KIII�t� �
����������
�lr�0
�lz�0

s
4

3p
s0

������
pa
p 1

2pi

Z
Br

U��1; p�
p

e pt dp:

�45�

6. Results and discussion

The functional dependence of the stresses on r1

and h1 as shown in Eqs. (42) and (43) reveals that
the local dynamic stresses in orthotropic func-
tionally graded materials also possess the inverse
square root singularity in terms of r1 while the
angular distribution in h1 is the same as that for
the orthotropic layered composite [8].

The dynamic stress intensity factor shown in
Eq. (45) is di�erent than that of the homogeneous
orthotropic material. The factor

�����������������������lr�0=�lz�0
p

ap-
pears for the orthotropic FGM; it could have a
signi®cant e�ect.

Fig. 2 shows the numerical results of cU��1; p�
as a function of the dimensionless Laplace trans-
form wave number �cz�20=pa for several di�erent

values of a and c � �����������������������lr�0=�lz�0
p

. Here, �cz�20 �����������������lz�0=q
p

. The in¯uences of the nonhomogeneity
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parameter a and the orthotropy parameter c on
cU��1; p� are obvious. For ®xed c, the magnitude
of cU��1; p� decreases when a increases. For ®xed
a, the magnitude of cU��1; p� increases when c in-
creases.

The numerical Laplace transform inverse
scheme [9] is used to give the dynamic stress in-
tensity factor given by Eq. (45). Fig. 3 displays the
normalized dynamic stress intensity factor
3pKIII�t�=4s0

������
pa
p

as a function of �cz�20t=a. The
in¯uence of a and c on KIII�t� can be seen in Fig. 3.
All the curves reach a peak and then oscillate
about the static value with decreasing magni®ca-
tion. For ®xed a, the dynamic stress intensity
factors are larger for larger values of c. For ®xed c,
the dynamic stress intensity factor is less for larger
values of a.

From Fig. 3, it is also seen that the peak value
of the dynamic stress intensity factor can be sup-
pressed by increasing the shear moduli's gradients
or increasing the shear modulus normal to the
crack. Fig. 3 also shows that the time required to
reach the peak decreases with increasing a or c.

7. Conclusion

The transient response is examined for an or-
thotropic FGM with a penny-shapped crack under
torsinal impact. The local stress ®eld around the
crack edge is determined. The dynamic stress in-
tensity factor shows that the nonhomogeneity and
orthotropy of FGM has a signi®cant in¯uence on
the local stresses. The peak value of the dynamic

Fig. 2. Variations of stress intensity factor in Laplace transform plane for (a) a � 0:5, (b) a � 5:0, (c) c � 0:5 and (d) c � 2:0.
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stress intensity factor can be suppressed by in-
creasing the shear moduli's gradient. Increasing
the shear modulus normal to the crack can also
reduce the peak value of the dynamic stress in-
tensity factor.
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