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A B S T R A C T :  The scattering of general SH plane wave by an interface crack be- 
tween two dissimilar viscoelastic bodies is studied and the dynamic stress intensity 
factor at the crack-tip is computed. The scattering problem can be decomposed into 
two problems: one is the reflection and refraction problem of general SH plane waves 
at perfect interface (with no crack); another is the scattering problem due to the exis-, 
tence of crack. For the first problem, the viscoelastic wave equation, displacement and 
stress continuity conditions across the interface are used to obtain the shear stress 
distribution at the interface. For the second problem, the integral transformation 
method is used to reduce the scattering problem into dual integral equations. Then, 
the dual integral equations are transformed into the Cauchy singular integral equation 
of first kind by introduction of the crack dislocation density function. Finally, the 
singular integral equation is solved by Kurtz's piecewise continuous function method. 
As a consequence, the crack opening displacement and dynamic stress intensity factor 
are obtained. At the end of the paper, a numerical example is given. The effects of 
incident angle, incident frequency and viscoelastic material parameters are analyzed. 
It is found that there is a frequency region for viscoelastic material within which the 
viscoelastic effects cannot be ignored. 

K E Y  W O R D S :  viscoelasticity, interface crack, general plane wave, integral trans- 
formation, singular integral equations 

1 I N T R O D U C T I O N  

The scattering problem of interface cracks is of importance in theoretical analysis 
and engineering applications. I t  is an important  aspect of dynamic fracture mechanics 
of interfaces, and can provide necessary information for the techniques of nondestructive 

evaluation (NDE). The problem can be separated into two problems: the first is the reflection 

and refraction problem at a perfect interface; the second is the scattering problem due to 
the existence of a crack. 
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For linear elastic materials, the reflection and refraction of elastic wave have been 
studied widely. Miklowitz [1] and Achenbach [2] both gave detailed discussions. The scattering 
problem of interface cracks was studied firstly by Srivastava [3'4] on Griffith and penny-shaped 
cracks. Yang & Body[ 5] considered the scattering of an elastic wave at the interface crack 
in a layered half-space. The scattering of SH elastic waves at the far field from a Griffith 
interface crack was investigated by Bostrom[ 6] . The scatterings of P and S waves by single or 
multiple interface crack in layered medium were studied by Ma et al. [7] and Zhang et al.[ s]. 
Qu [9'1~ studied the scattering at the near field and far field of a Griffith interface crack by 
using singular integral equation. 

For viscoelastic materials, it is the viscoelastic wave that  propagates. There are three 
important characteristics in which viscoelastic wave is different from elastic wave: 1) atten- 
uation, 2) dispersion, and 3) movement coupling (i.e. the movement track of mass point 
is elliptical for P and S waves). These characteristics require the introduction of complex 
wave number and complex wave speed, which adds difficulties for the analysis. The studies 
of reflection and refraction of general plane wave dated back to the sixties when Lockett In] 
firstly investigated the reflection and refraction of P and S waves at free boundary and in- 
terface. It was found that  reflection and refraction wave would be a fan-shaped section for 
compound incident waves. The investigation by Cooper [12'13] on the same problem has iden- 
tified the phase shift phenomena between reflection or refraction wave and incident wave. 
Schoenberg[ 14] studied the reflection and refraction of SH wave and associated energy flow. 
Borchert [15] studied the reflection and refraction of P and S wave and critical angle for inci- 
dent wave, But the investigations of the scattering problem of viscoelastic wave by crack are 
rare. Only Georgiadis [16,17] studied the dynamic response due to a sudden load for Griffith 
and penny-shaped cracks in homogenous viscoelastic bodies. 

In this paper, the scattering problem of general SH plane wave due to an interface 
crack between two dissimilar viscoelastic bodies are considered, and the numerical results 
are obtained for the case of a Standard Linear Solid. The numerical study reveals an 
interesting feature: there is a frequency influence region existing for viscoelastic materials 
within which the viscoelastic effects cannot be ignored. In addition, the method in this 
paper can be used to study the scattering of P or SV waves. 

2 F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider a Griffith interface crack of length 2a between two dissimilar, homoge- 
nous, isotropic, and linear viscoelastic solids of half-spaces. /k Cartesian coordinate system 
is assumed in such a way that  the x-axis is along the crack direction and the y-axis is 
perpendicular to crack direction, as shown in Fig.1. The crack is infinite wide in z-direction. 

Densities of the two materials are denoted 

b y  Pl,P2 and shear relaxation moduli by 
Gi (t), G2(t), respectively. Standard linear 
solid model is used for the viscoelastic mate- 
rials, where relaxation modulus can be writ- 
ten as 

Gi(t)=#ooi[l+f~exp(-t)] 

(i = 1, 2) (1) 

Fig. 1 
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in which fi - #oi 1,/to and #c~ are the instantaneous shear modulus and steady state 
gooi 

shear modulus, respectively, and Ti is the relaxation time of the viscoelastic materials. 
Consider the case when there is an oblique incident general SH plane wave travelling 

from infinity in the viscoelastic solid. When it reaches the interface, reflection and refraction 
waves will be generated. The total displacement field can be written as 

. 

u =  vl + u[ + v[ y < 0  
v~ + u~ y > o (2) 

where, U~, U[ and U~ are the incident, reflection and refraction displacement fields, respec- 
tively for a perfect interface, i.e. the one with no crack. U~ and U~ are the scattering 
displacement field due to the existence of a crack. 

The boundary conditions of the problem are given as 

~-~(~, o , t ) = o  

rye(x, o +, t) = ryz (z, o- ,  t) 

u(~, o +, t) = u(~, o-,  t) 

Ixl < a (3) 

- o o  < x < cr  (4) 

I~1 > a (5) 

U(x, y, t) = 0 x, y -~ oo (6) 

3 R E F L E C T I O N  A N D  R E F R A C T I O N  O F  G E N E R A L  SH P L A N E  W A V E  
A T  P E R F E C T  I N T E R F A C E  

The incident general SH plane wave can be written in the follow forms 

i exp[i(pi ,  x + p~.  y)] exp(iwt) U~ = w~ exp(iP i .  r) exp(iwt) = w 1 (7) 

where, w i is the complex amplitude in z direction; p i , p i  are respectively the complex 
projection of complex vector p i  along x, y directions; r = x .  x + y .  y is the position vector. 

In the case of SH incident wave, the reflection wave and refraction wave are the SH 
wave. Similarly, the reflection and refraction waves can be written respective!y as 

U[ -- w~ exp(iP r .  r)  exp(iwt) = w~ exp[i(P r -  x + Py .  y)] exp(iwt) (8) 

U t = w t exp(iP t -  r) exp(iwt) = wt~ exp[i(P~ t-  x + p t .  y)] exp(iwt) (9) 

For convenience, the common factor exp(iwt) will be omitted hereafter. 
All the displacement fields mentioned above satisfied the viscoelastic wave equation 

without exception, in which a complex wave number is included. 

V2U k + k2s U~ = 0 the superscript k = i , r , t  (10) 

w2p is the complex wave number; #(w) = it0 + iwG(w) is the complex modulus; where ks 2 = #(w) 

and G(w) = {F[G(t)], t --+ w} is the Fourier transformation of the shear relaxation modulus 
c(t).  
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Interface boundary conditions require 

v~ + v~ = v t y = 0  (11) 

y = 0  (12) 

It follows from (10)~(12) that reflection factor, refraction factors and interface shear stress 
are 

(13) 
~i g:(~)P~ +.~(~)Pt  

/3t = wA = 2#l(w)Py (14) 
w~ .2(~)P t + . l (~)Pt  

(15) Ttz(x,O,w) = #2(W)~y (U t) = #2(w)wi~t(ipt) �9 exp(iP i .  x) 

4 THE DERIVATION A N D  N U M E R I C A L  SOLUTION OF S I N G U L A R  
I N T E G R A L  EQUATION FOR S C A T T E R I N G  FIELD 

4.1 Dual  In tegra l  Equat ions  of  Crack Opening Displacement (COD) 
The COD is defined as 

COD = U~(x,0+,w) - U[(x,O-,z) = ~ Aw(x,w) Ixl < a (16) 
( 0 Ixl > a 

The scattering displacement field US(x, y) satisfies the viscoelastic wave equation (10) and 
radiation condition (6). By using the Fourier integral transformation, we can get scattering 
displacement field in the transformation domain, i.e. US(s, y) . .By employing the interface 
displacement continuous conditions outside of crack and stress boundary conditions on crack 
surface, the dual integral equations about the unknown function A~(s, w) were constructed 

F- I [AS]  = 0 Ixl > a 

(17) 

where 

#1 (w) V~s21 - s 2 

A~(s,w) = F[Aw(x,w)], 
Fourier transformation, respectively. 

4.2 Singular  In tegra l  Equation of  Crack Dislocation Densi ty  
Crack dislocation density function is defined as 

(18) 

F [ ]  and F - t [ ]  denote the Fourier transformation and inverse 

�9 (x,~) = ~  (19) 
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Applying the Fourier integral transformation on x, Eq.(19) becomes 

~(s, w) = (is) A~(s, w) (20) 

Substituting Eq.(20) into the first equation of Eqs.(17) yields 

f[ o (21) 
a 

Substituting Eq.(20) into the second equation of Eqs.(17) yields 

"~il oooo #l(W) sl a ~(u)ei~Udu e-iSXds = 

- r  t (x, 0,w) Ix[ < a (22) y z  

Considering 

) ~ - - ~ / k ~  1 l i m  #1 (03 1 - 8 2 -  : 
s---+ oo s 

and using Riemman-Lebesgue lemma[ ls] 

we can reduce Eq.(22) into 

#l(w)#2(w) sign(s) 
+ 

(23) 

-~elS(~_X)sign(s)ds _ 2i (24) 
oo U - - X  

L f #l(w)#2(w) 1 a ~(U) du + K(u,w)~(u,w)du=-r~(x,O,w) Izl < a  (25) 

where 

'K(u,w)-  1 [#l(W) 1 _  #l(w)#2(w).sign(s)]e_iS(~_~)ds (26) 
21ri oo s •1 (Cd).-1 t- #2 (0J) ' J  

This is the first kind of Canchy singular integral equation (SIE). 

4.3 Numerical Resolution of Singular Integral Equation 
According to the theory of singular integral equationB 9], the dislocation density func- 

tion can be written as 
~(x, w) = qo(x, w)W(x) (27) 

where the fundamental solution W(x) = (a - x)l/2(a + x) 1/2 reflects the singularity of 
dislocation density function at the crack-tip. The real singular index implies that there is 
no oscillation singularity for interface cracks under anti-plane shear loading. 

Because of the complexity of the integral kernel K(u,~), formula (25) can only be 
solved by numerical methods. There are mainly two numerical methods that can be used. 
One is based on the Jacobi or Chebyshev orthogonal polynomials developed by Erdogan [2~ 
Another is based on the piecewise continuous polynomial developed by Kurtz [2q. The first 
method decomposes the unknown function into a series from an overall view 

N N 

~(x) = Za,~P(a'~)(x) = ZanTn(x) (when a =/~ = 1/2) (28) 
0 0 
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and transforms the singular integral equation about qo(x) into algebraic equations about the 
factors an. The second method decomposes the unknown function from a local view 

N N n 

(29) 
1 i=1  j = l  

n 

r = E  Aij(x)cPlj is an interpolation polynomial of order n -  1 in where the interval 
j = l  

[xi, xi+l], and transforms the singular integral equation about  ~(x) into algebraic equations 
about  the collection point functions qoij. 

In this paper, the piecewise continuous polynomial method is used, and the Lagrange 

interpolation polynomial of second order is used for qoi(x). The detailed process of the 
method will not be repeated here. After the crack dislocation density ~(x) is obtained, we 
can get 

f f Aw(x, w) = * (x, w)dx = cp(x, w)W(x)dx (30) 
t% a 

Tyz(x,O,w)= #I(W),2(W) 1 a ) d u +  g(u,w)~(u,w)du I x l > a  (31) 
+ o ~ - 

KxII = lim X/21r(x-  a) Tuz(X, O, W) (32) 

5 N U M E R I C A L  E X A M P L E  

One example is given here to illustrate the use of the method aforementioned. The 
viscoelastic material parameters used in the numerical example are listed in Table 1. The 
parameters of the incident wave are w i - 1 + i. Obviously, as response to the incident wave, 

the crack opening displacement COD and the stress intensity factor K m  are all functions 

of the incident angle 0 i and incident frequency w. In order to show sufficiently the effects 
of the incident wave, numerical calculations are carried out for various 8 i and w values and 
the results were shown as 3D contour plots. 

Table 1 

#0/MNm -2 #oo/MNm -2 r /s  p/kgm -a 
viscoelastic material 1 0 .127E10  0.634E9 20.0 1200 
viscoelastic material 2 0.634E9 0.254E9 20.0 1200 

Figure 3 shows the variation of the complex modulus #(w) with different incident 
frequencies w. It can be seen that  the imaginary part  of complex modulus #(w) approaches 

zero for large and small w, and it has significant value only in a narrow frequency region. 
The region can be called the frequency influence region. For the viscoelastic parameters 
employed in this paper, this region is roughly defined as 

10 -3 < frequency (w) < 10 ~ 

2~r < period (T) < 27r x 103 

27r x ~ < wave length (~) < 2 r  x 103 x 
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Fig.2 The reflection and refraction of general 
SH plane wave on perfect iffterface be- 
tween two dissimilar viscoelastic bodies 
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Fig.3 Viscoelastic material complex modulus 
#(ca) versus ca 

Comparing curves 1 and 2 in Fig.3, it can be seen that  the relaxation time r only affects the 
location of the frequency influence region, but has no effect on the complex module's peak 
value. On the other hand, comparing the curves 1 and 3 in Fig.3, it can be seen that  the 
change of viscoelastic parameter f results in the change of complex module's peak value, 
but with no change on the location of the frequency influence region. 

Figure 4 shows the crack opening displacement COD along the crack length for various 
incident angles ~i when w = 1. The numerical results in the figure have been normalized 
by the COD at the center of the crack, i t  can be seen that  the peak value of COD reaches 
maximum at 8i = 0 and decreases gradually as the incident angle increases. When the 
incident angle becomes 90 ~ , the crack surface will close completely. The peak value of COD 
located at the center of the crack at normal incident and the location is nearly constant as 
the incident angle increases. 

Fig.4 Crack open displacement COD along crack length versus incident angle 0 ~ for ca = 1 

Figure 5 shows the crack opening displacement COD along the crack length for various 
normal incident frequencies. The numerical results in the figure have been normalized by 
dividing by the COD for w = 1. It can be seen that  the peak value of COD reaches maximum 
at w = 1 and decreases gradually as the incident frequency decreases. Like that  in Fig.4, 
the peak value of COD always locates at the center of the crack. 

Figure 6 shows the dynamics stress intensity factor K m  for various incident angles and 
incident frequencies. The numerical results in the figure have been normalized by dividing 
by the dynamic stress intensity factor at 8 i = 0 and w = 1. It can be seen that  the dynamic 
stress intensity factor KIII reaches maximum at t? i = 0 and decreases monotonically as the 
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Fig.5 Crack open displacement COD versus frequency w for normal incident 

Fig.6 Dynamic stress intensity factor K m  versus incident angle O i and incident frequency w 

incident angle increases when the incident frequency w is fixed. For graze incident, K m  is 

equal to zero. When the incident angle 0i is fixed, IKIII[ increases monotonically when the 

frequency w increases. 

Figure 7 shows the COD for various incident angles 0i when the dimensionless wave 

Fig.7 Crack open displacement COD along crack length versus incident angle 0i 

for the case of dimensionless wave number k = 3 
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number k = w a / ~  = 3. From the figure, it can be seen that  the location of the peak 

value of COD shifts gradually with increasing incident angle, when incident wave length is 

quantitatively close to crack length. 

In summarizing our numerical study, the following conclusions are drawn: 

(1) The viscoelastic behavior of materials has effects on the incident wave in the fre- 
quency influence region. The region is determined completely by the viscoelastic material 
parameters: the relaxation time r affects the location of the frequency influence region, and 
f affects the peak value of the complex modulus in the frequency influence region. 

(2) For incident wave whose frequency is outside of the frequency influence region, the 

dynamic response characteristics of viscoelastic materials are equivalent to those of elastic 

materials with shear modulus # ~  for small w or those of elastic material with shear modulus 

#0 for large w. 

(3) For incident wave whose frequency is within the frequency influence region, when 
the incident angle ~i is fixed, the crack opening displacement COD and the dynamic stress 

intensity factor IKi]ll increase monotonically as the frequency w increases. When the fre- 
quency w is fixed, they decrease monotonically as the incident angle 8 i increases and are 

equal to 0 at 0 ~ = 90 ~ 
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