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Using dimensional analysis and finite element calculation, we studied spherical
indentation in elastic–plastic solids with work hardening. We report two previously
unknown relationships between hardness, reduced modulus, indentation depth, indenter
radius, and work of indentation. These relationships, together with the relationship
between initial unloading stiffness and reduced modulus, provide an energy-based
method for determining contact area, reduced modulus, and hardness of materials from
instrumented spherical indentation measurements. This method also provides a means
for calibrating the effective radius of imperfectly shaped spherical indenters. Finally,
the method is applied to the analysis of instrumented spherical indentation experiments
on copper, aluminum, tungsten, and fused silica.

I. INTRODUCTION

Since the inception by Brinell about 100 years ago,
spherical indentation techniques have become industry
standard methods for measuring the hardness of materi-
als.1–4 Recent years have seen increasing interest in
instrumented spherical indentation techniques for meas-
uring the mechanical properties of materials across mul-
tiple length scales. By analyzing the load–displacement
curves, several authors have suggested methods of ob-
taining hardness, elastic modulus, stress–strain relation-
ships, and residual stresses from instrumented spherical
indentation measurements.5–12 However, most of the pre-
viously proposed methods depend on the estimation of
the contact area under the spherical indenter, which is
difficult especially when the surface around the indenter
exhibits “piling-up.”13–16

By extending a recently developed scaling ap-
proach17,18 to spherical indentation in elastic–plastic sol-
ids with work-hardening, we reveal, in this paper, two
previously unknown relationships between hardness, re-
duced modulus, indentation depth, indenter radius, and
work of indentation. Together with a well-known rela-
tionship5 between reduced modulus, initial unloading
slope, and contact area, we propose an energy-based
method of determining the contact area, reduced modu-
lus, and hardness of materials from instrumented spheri-
cal indentation experiments. This method also provides a
way of calibrating the effective radius of imperfect
spherical indenters. The validity of the method is tested
by instrumented spherical indentation experiments on
copper, aluminum, tungsten, and fused silica. These
newly found relationships also provide fresh insights into
contact problems that are ubiquitous in many science and
engineering areas, including friction, wear, as well as
macro- and nanoscale mechanical forming processes.

II. DIMENSIONAL AND FINITE
ELEMENT ANALYSIS

We consider a three-dimensional, rigid, spherical in-
denter of radius, R, indenting into an isotropic elastic–
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plastic material with work hardening [Fig. 1(a)]. The
stress–strain (�–�) curves of the solid under uniaxial ten-
sion are given by

� = E�, for � � Y�E ,
� = K�n, for � � Y�E , (1)

where E is the Young’s modulus, Y is the initial yield
stress, K is the strength coefficient, and n is the strain-
hardening exponent. To ensure continuity at the initial
yield stress, we note K � Y(E/Y)n. Consequently, E, Y,
and n are sufficient to describe the uniaxial stress–strain
relationship. The friction coefficient at the contact sur-
face between the indenter and the solid is assumed to be
zero.

During loading, the two dependent variables, force (Fl)
and contact depth (hc), must be functions of all six inde-
pendent governing parameters, E, Poisson’s ratio (�), Y,

n, indenter displacement (h), and R. Applying the � theo-
rem in dimensional analysis,19 we obtain

Fl = ER2���Y

E
, �, n,

h

R� , (2)

hc = R���Y

E
, �, n,

h

R� , (3)

where �� � Fl/ER2 and �� � hc/R are two dimension-
less functions of four dimensionless parameters: Y/E, �,
n, and h/R.

During unloading, the force on the indenter (Fu) is a
function of all seven independent parameters, E, �, Y, n,
h, R, and indenter displacement at maximum load (hmax)
because unloading occurs after the indenter reaches hmax.
Again, applying the � theorem in dimensional analy-
sis,19 we obtain

Fu = ER2�	�Y

E
, 
, n,

h

R
,

hmax

R � , (4)

Equations (2) and (4) can formally be integrated with
respect to displacement to obtain expressions for the to-
tal work, Wt, and reversible work, Wu, defined as the
areas under the respective loading and unloading curves
[Fig. 1(b)]. Furthermore, we have shown20 (see the Ap-
pendix) that hc/hmax, hf /hmax, (Wt − Wu)/Wt, and ratio of
hardness to reduced modulus, H/E* where E* � E/(1 −
�2), are all dimensionless functions of Y/E, �, n, and
hmax/R. It is therefore interesting to investigate the rela-
tionships between (Wt − Wu)/Wt hf /hmax, and H/E*, as
well as the degree of “piling-up” (i.e., hc/hmax > 1) and
“sinking-in” (hc/hmax< 1) as a function of materials prop-
erties (Y/E, �, and n) and indentation depth (hmax/R).

Because there is no analytical solution for spherical
indentation in elastic–plastic materials, a finite element
analysis was used to study the problem. In this work, an
extensive finite element computation was carried out us-
ing ABAQUS (version 6.2, Hibbitt, Karlsson & So-
rensen, Inc., Pawtucket, RI) to calculate hc/hmax, hf /hmax,
(Wt − Wu)/Wt, and H/E*. The radius of the rigid indenter
was 1 �m. The Young’s modulus was 200 GPa, and
Poisson’s ratio was 0.2. The strain-hardening exponent,
n, was chosen to be 0.1, 0.3, and 0.5, respectively. For
each strain-hardening exponent, five different Y/E values
were used, namely, 0.002, 0.005, 0.01, 0.025, and 0.1,
which represent materials from soft metals to hard ce-
ramics. For each combination of n and Y/E, computations
were carried out for several values of hmax, allowing the
evaluation of the scaling functions for a range of hmax/R
values from 0.05 to 0.5.

The rate-independent, incremental theory of plasticity
in ABAQUS was used in the finite element calculations.
In particular, the plasticity theory uses the von Mises’
yield surface model with associated plastic flow rule.

FIG. 1. (a) Schematic illustration of spherical indentation, and
(b) loading–unloading curves and definition of the irreversible work,
Wt − Wu, and reversible work, Wu.
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Because of the axisymmetry of the problem, two-
dimensional mesh and boundary conditions, similar to
those in Refs. 17 and 18, were adapted. The smallest
element, which lies in the contact region, is 25 nm. The
load–displacement curves as well as contact area were
obtained directly from the finite element calculations.
The residual indentation depth, hf, and the maximum
load, Fmax, were obtained from the load–displacement
curves for each given hmax. The total work, Wt, and re-
versible work, Wu, are obtained by integrating the load-
ing and unloading curves, respectively.

A. Piling-up/sinking-in in spherical indentation

The ratio of hc/hmax is used to evaluate the degree of
the piling-up and sinking-in. The calculated values of
hc/hmax for various materials at different indentation
depths are shown in Fig. 2. It is evident that, in general,
hc/hmax depends on hmax/R, n, and Y/E for spherical in-
dentation in elastic–plastic solids with work hardening.
For materials with small values of Y/E and n (i.e., typical
work-hardened metals), sinking-in occurs at small inden-
tation depth whereas piling-up occurs at large indentation
depth [Figs. 2(a) and 2(b)]. For materials with large val-
ues of Y/E and n, sinking-in is observed for all indenta-
tion depths [Fig. 2(c)]. These observations can be under-
stood by the fact that sinking-in always occurs for
Hertzian elastic contacts, whereas piling-up occurs for
rigid–plastic contacts.2 Thus, the ratio of “elastic com-
ponent” to “plastic component” of deformation decreases
with increasing hmax/R and decreasing values of Y/E and
n for spherical indentation in elastic–plastic solids with
work hardening.

It is instructive to note that the degree of piling-up and
sinking-in is independent of depth for conical and
pyramidal indentation in the same class of solids. This
depth independence is the consequence of the absence
of a length parameter associated with ideally sharp
conical and pyramidal indenters.17 It is also instructive
to compare the current numerical results with some
early experimental work by Norbury and Samuel,13

who believed that piling-up and sinking-in depended
on the work-hardening exponent, n, only. Their obser-
vation was primarily based on indentation in me-
tals (i.e., small values of Y/E with n values from 0.0
to 0.5) where the effect of n is dominant. In general,
however, the degree of piling-up and sinking-in depends
on Y/E, n, and hmax/R which makes the determination
of contact area under load difficult using conven-
tional methods. In the following analysis, we show that
it is possible to circumvent this difficulty of estima-
ting contact area using an energy-based method de-
rived from a scaling relationship between H/E* and
(Wt − Wu)/Wt.

B. Relationship between hf /hmax and (Wt − Wu)/Wt

The representative load–displacement curves, obtained
by finite element calculations, of a material with Y/E �
0.025, � � 0.2, and n � 0.5 at various depths are shown
in Fig. 3. By analyzing the load–displacement curves, we
observed a relationship between (Wt − Wu)/Wt and hf /
hmax, which is shown in Fig. 4. This relationship can,
from a least squares fit, be written as

hf

hmax
=

Wt − Wu

Wt
. (5)

Equation (5) shows that the degree of permanent de-
formation, measured by the ratio of residual depth to

FIG. 2. Degree of piling-up and sinking-in as a function of hmax/R, n,
and Y/E in spherical indentation modeling. (a) n � 0.1, (b) n � 0.3,
and (c) n � 0.5.
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maximum indenter displacement, hf /hmax, is simply re-
lated to the ratio of irreversible work to total work, (Wt −
Wu)/Wt. The measurement of one leads to the measure-
ment of the other. In practice, however, the determination
of the work can be made more accurately than the meas-
urement of hf, as the former is from the integration of
loading–displacement curves, whereas the latter is from
the estimation of a single point on the unloading curve.
Furthermore, this relationship is “universal” because it
does not depend on the details of the mechanical behav-
ior of solids, such as E, Y, and n. Nor does the relation-
ship depend on the indenter radius, R, or indentation
depth, h. This new relationship is analogous to a rela-
tionship previously established for conical and pyramidal
indentation in elastic–plastic solids with work harden-
ing.18,21 Together, they demonstrate that a simple linkage
exists between the work of indentation and deformation
which is independent of the details of material properties
and indenter geometry.

C. Relationship between H/E* and (Wt − Wu)/Wt

An approximately linear relationship between H/E*
and (Wt − Wu)/Wt for spherical indentation in elastic–
plastic solids is revealed in Fig. 5. For each fixed hmax/R,
this relationship can be expressed as

�Wt − Wu�

Wt
= B

H

E*
+ 1 , (6)

where B is obtained from a least squares fit to the linear
relationships in Fig. 5. Furthermore, the value of B is
observed to depend on hmax/R only (Fig 6); that is,

B = −1.687 �hmax

R �−0.62

. (7)

By combining Eqs. (6) and (7), we obtain

H

E*
= 0.5928 �hmax

R �0.62�Wu

Wt
� . (8)

Thus, the ratio of hardness to reduced modulus, H/E*,
can be obtained by determining hmax/R and Wu/Wt. Re-
cently, an approximately linear relationship between
H/E* and Wu/Wt was obtained for conical and pyramidal
indentation in elastic–plastic solids with work harden-
ing.18,22,23 The two quantities were found to be propor-
tional to each other with the proportionality factor a func-
tion of the indenter angle in conical indentation modeling
and experiments. Equation (8) shows that, for the first
time, a similar relationship exists for spherical indenta-
tion in elastic–plastic solids.

As an application of Eq. (8), we use it together with a
well-known relationship between reduced modulus, E*,
initial unloading stiffness, S, and contact area, Ac,

5,24

E* =
��

2

S

�Ac

. (9)

By combining Eqs. (8) and (9) and the definition of
hardness, H � Fmax/Ac, we obtained

FIG. 3. Calculated load–displacement curves of a material with Y/E
� 0.025, � � 0.2, and n � 0.5 at various indentation depths.

FIG. 4. A linear relationship exists between hf /hmax and (Wt − Wu)/Wt:
finite element results and experimental data.

FIG. 5. For each fixed hmax/R, a linear relationship exists between
H/E* and (Wt − Wu)/Wt for spherical indentation in elastic–plastic
solids with work hardening.
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Ac = � 1.903Fmax

�hmax

R �0.62 �Wu

Wt
�S�2

, (10)

E* =
0.4657S2�hmax

R �0.62�Wu

Wt
�

Fmax
, (11)

H = 0.276 �hmax

R �1.24�Wu

Wt
�2 S2

Fmax
. (12)

Because Fmax, hmax/R, Wu/Wt, and S can be measured
directly from the load–displacement curves, contact area,
reduced modulus, and hardness can in principle be ob-
tained from Eqs. (10)–(12). The main advantage of this
energy-based method is that it applies to both piling-up
and sinking-in of the surface profiles around indenters
whereas the commonly used methods cannot be used
when piling-up occurs. While this method is based on
analysis of rigid spherical indentation in elastic–plastic
solids with work hardening, it is necessary to test its
robustness through experiments under realistic and often
imperfect conditions, such as nonsphericity and nonri-
gidity of spherical indenters.

III. EXPERIMENTS

Spherical indentation experiments were conducted us-
ing a Nano Indenter XP (Oak Ridge, TN) from MTS with
a rounded conical diamond indenter. The included cone
angle was 90° and the nominal tip radius was 10 �m. At
least five indentations were made at each load to generate
average values and standard deviations reported in this
work. The load range was between 10 and 400 mN. The
indentation experiments were conducted using load con-
trol with a constant loading rate. Unloading was initiated

immediately after the load reached the prescribed maxi-
mum load at the end of each loading cycle without a
holding period. All indentations were conducted at room
temperature. The mechanical properties of tested mate-
rials, pure copper, 6061-T6 aluminum, pure tungsten,
and fused silica, are shown in Table I. The composite
reduced modulus, E*, is given by

1

E*
=

1 − 
s
2

Es
+

1 − 
i
2

Ei
, (13)

where Es and �s are the Young’s modulus and Poisson’s
ratio of the samples, respectively. Ei and �i are the
Young’s modulus and Poisson’s ratio of the indenter,
respectively. Specifically, Ei � 1141 GPa and �i � 0.07
for the diamond indenter. The fused silica sample was
obtained from MTS as the standard calibration material.
The copper, aluminum, and tungsten samples were me-
chanically polished, finishing with 0.25-�m-diameter
diamond paste. The average surface roughness, Ra, meas-
ured using a Wyco optical profilometer (Tucson, AZ),
was 20, 49, and 23 nm for the polished copper, alumi-
num, and tungsten samples, respectively.

The relationship between hf /hmax and (Wt − Wu)/Wt

for copper, aluminum, tungsten, and fused silica is shown
in Fig. 4, together with finite element results. It is evident
that, for all the materials tested, hf /hmax is approximately
proportional to (Wt − Wu)/Wt, which is consistent with
the finite element analysis. The agreement suggests that
this relationship is insensitive to the finite elasticity of
the diamond indenter and imperfections in the diamond
indenter geometry. However, the imperfection in the
spherical shape of the diamond indenter can be shown to
cause problems for direct applications of Eqs. (10)–(12).
In the following, a method for obtaining an effective
radius for imperfect spherical indenters is established to
circumvent these problems.

For indenter shape calibration, instrumented spherical
indentation experiments were conducted on the copper
sample for depth ranging between 150 nm and 1850 nm.
The values for S, Fmax, hmax, and Wu/Wt were obtained

FIG. 6. A linear relationship between log(hmax/R) and log(-B).

TABLE I. Mechanical properties of tested materials.

Materials

Young’s
modulus
E (GPa)

Poisson’s
ratio

�

Composite
reduced
modulus
E* (GPa) Reference

Copper 126 0.345 127.1 25
6061-T6 Aluminum 70.4 0.347 74.8 26
Tungsten 409.8 0.28 320.3 26
Fused silica 72 0.17 69.6 27

The composite reduced modulus is calculated using Eq. (13) for the dia-
mond indenter indenting the various materials.
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from load–displacement curves shown in Fig. 7. Equa-
tion (11) was then used to calculate the effective tip
radius, Reff, at various depths, assuming a constant com-
posite reduced modulus for copper, E*Cu � 127.2 GPa.
The relationship between Reff and hmax is shown in
Fig. 8. Ideally, the radius should be independent of the
indentation depth for a perfect spherical indenter. The
effective tip radius was found, however, to be a function
of indentation depth due to its imperfect geometry. An
increase of more than 50% in tip radius over the depth
was observed. A power-law fitting was used to interpo-
late the effective indenter radius. This indenter “shape
function” is given by (Fig. 8)

Reff = 1915.6hmax
0.2755 for 150 nm  hmax  1850 nm .

(14)

Using the same diamond indenter, spherical indenta-
tion experiments were then conducted on 6061-T6 alu-
minum, tungsten, and fused silica with indentation depth
from 180 nm to 1650 nm. The load–displacement curves
are shown in Fig. 9(a)–(c). The composite reduced
modulus for aluminum, tungsten, and fused silica, calcu-
lated using Eq. (11) together with the shape function
Eq. (14), at various depths is plotted in Fig. 10(a). As
expected, the measured composite reduced modulus val-
ues are approximately depth independent. The measured
composite reduced modulus of aluminum ranges from
74.3 to 78.6 GPa. The composite reduced modulus of
tungsten ranges from 296 to 316.8 GPa. Compared with
the calculated composite reduced modulus of aluminum
and tungsten in Table I, the difference is within 8%,
suggesting that the proposed energy-based method to-
gether with indenter shape calibration is applicable to
materials with a wide range of elastic modulus values. It
also suggests that the proposed energy-based method can
be used to analyze materials with Poisson’s ratio ranging

from 0.2 to 0.35, although Eqs. (10)–(12) were derived
by using materials with � � 0.2. We have performed
additional finite element calculations to test the applica-
bility of Eqs. (10), (11), and (12) to materials with � �
0.3. Specifically, we generated a set of loading–
unloading curves for materials with � � 0.3 and used
Eq. (11), which was obtained for � � 0.2, to evaluate the
Young’s modulus. The calculated Young’s modulus
value using Eq. (11) is within 15% of that used in the
finite element input when the indentation depth is shal-
low with respect to the indenter radius (i.e., hmax/R <
0.2). We believe that in the derivation of Eqs. (10)–(12),
most of the effect of Poisson’s ratio has been taken into
account by using the reduced modulus, E* � E/(1 − �2),
although it has been shown that there is additional Pois-
son’s ratio effect even in the well-known relationship
Eq. (9) between reduced modulus, initial unloading stiff-
ness, and contact area.28

The measured composite reduced modulus of fused
silica is between 58.2 and 60.4 GPa. The difference be-
tween the calculated and measured value for fused silica
is within 16%. It should be noted that the fused silica data
also exhibit the largest deviation in the correlation be-
tween hf /hmax and (Wt − Wu)/Wt (Fig. 4). Although the
cause of this deviation is not yet known, it suggests that
the relationship between hf /hmax and (Wt − Wu)/Wt may
be used to help screen materials for which the new
method is applicable. Specifically, the energy-based
method consists of the following steps:

(i) Using Eqs. (11) and (13) to determine the effective
indenter radius, Reff, as a function of indentation dis-
placement, hmax, by indenting a material with a known,
depth-independent Young’s modulus and Poisson’s ratio.
This shape function is an interpolation function over the
indentation depth of interest and is not necessary to be
the power-law form given by Eq. (14).

(ii) Checking the applicability of the energy-based
FIG. 7. Experimental load–displacement curves for spherical inden-
tation in a copper sample.

FIG. 8. Effective indenter radius, Reff, as a function of indentation
depth, hmax, for an imperfect spherical diamond indenter.
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method by plotting hf /hmax and (Wt − Wu)/Wt. A neces-
sary condition is that the correlation exists for materials
of interest.

(iii) Evaluating the reduced modulus for materials of
interest using Eqs. (11) and (13) together with the shape
function determined in step (i).

The robustness of this method is seen from the evalu-
ation of the reduced modulus values for several materials
using an imperfect spherical indenter with a varying ef-
fective radius of about 50%. The method does not depend

on assumptions about piling-up and sinking-in of mate-
rials around the spherical indenters.

Finally, hardness values for fused silica, W, Al, and
Cu are obtained using Eq. (12) together with the indenter
shape function Eq. (14). The results are shown in
Fig. 10(b). While these values are within the range of
reported hardness for the Cu, Al, and W, detailed com-
parison is complicated because of several factors. Spe-
cifically, (i) most of the literature data were obtained
using Berkovich indenters where a pronounced indenta-
tion size effect was reported for these materials.29–31 For
sharp indentation, a strain-gradient plasticity model has
been developed to describe the indentation size effect;
that is, the increase of hardness with decreasing inden-
tation depth.32 (ii) The indentation size effect is different
under spherical indenters, where the hardness is not ex-
pected to show depth dependence but is expected to de-
pend on the radius of spherical indenters according to
analysis based on the theory of strain gradient plastic-
ity.33 (iii) Hardness increases with indentation depth for
spherical indentation in elastic–plastic solids with work
hardening.2 With an imperfect spherical indenter, such as
the one used in this work, it is possible that the two

FIG. 9. Experimental load–displacement curves obtained from instru-
mented spherical indentation experiments in (a) aluminum, (b) tung-
sten, and (c) fused silica.

FIG. 10. (a) Measured composite reduced modulus and (b) hardness
using the energy-based method together with indenter shape calibra-
tion. The error bar indicates the standard deviation of the measured
values.
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effects, work hardening and indentation size effect, can-
cel each other because of increasing Reff with depth, re-
sulting in a slightly decreasing hardness for Cu, Al, and
W with depth [Fig. 10 (b)]. While the imperfection in
sphericity can be remedied for modulus measurements
using a shape function [e.g., Eq. (14)], materials hardness
is indenter shape dependent. It is therefore desirable to
use as perfect spherical shape as possible for hardness
measurements using spherical indenters.

IV. SUMMARY

The degree of piling-up/sinking-in and the relation-
ships between H/E*, (Wt − Wu)/Wt, and hf /hmax have been
studied using dimensional analysis and finite element
calculations. For a fixed hmax/R, a linear relationship ex-
ists between H/E* and (Wt − Wu)/Wt and the proportion-
ality depends on hmax/R only. Using the above relation-
ships, together with the initial unloading stiffness, an
energy-based method has been proposed to derive the
contact area, reduced modulus, and hardness of materials
from instrumented spherical indentation experiments.
This new method can also be used to calibrate the effec-
tive tip radius of an imperfect spherical indenter. The
validity of the new method was studied by instrumented
indentation experiments on copper, aluminum, tungsten,
and fused silica. Future work includes the refinement of
the proposed energy method to cover a wider range of
materials behavior.

ACKNOWLEDGMENTS

We would like to thank Yue Qi, T. Wes Capehart,
Thomas A. Perry, Cameron Dash, and Mark W. Ver-
brugge for the help and valuable discussions.

REFERENCES

1. E10-01 Standard Test Method for BRINELL Hardness of Metallic
Materials (ASTM International, West Conshohocken, 2003).

2. D. Tabor, The Hardness of Metals (Oxford University Press, Lon-
don, U.K., 1951); Philosophical Magazine A 74, 1207 (1996).

3. B.W. Mott, Micro-indentation Hardness Testing (Butterworths,
London, U.K., 1956).

4. A.C. Fischer-Cripps, Nanoindentation (Springer-Verlag, New
York, 2002).

5. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
6. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993); J. Mater.

Res. 10, 101 (1995).
7. F.M. Haggag and G.E. Lucas, Metall. Trans. 14A, 1607 (1983).
8. B. Taljat, T. Zacharia, and F.M. Haggaga, J. Mater. Res. 12, 965

(1997).
9. N. Huber and C. Tsakmakis, J. Mech. Phys. Solids 47, 1569 , 1589

(1999).
10. J. Alcalá, A.E. Giannakopoulos, and S. Suresh, J. Mater. Res. 13,

1390 (1998).
11. S. Kucharski and Z. Mróz, J. Eng. Mater. Technol. 123, 235

(2001).

12. G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay,
Thin Solid Films 398–399, 331 (2001).

13. A.L. Norbury and T. Samuel, J. Iron Steel Inst. 117, 673 (1928).
14. M.M. Chaudhri and M. Winter, J. Phys. D.: Appl. Phys. 21, 370

(1988).
15. Y-T. Cheng and C-M. Cheng, Philos. Mag. Lett. 78, 115 (1998).
16. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).
17. Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1998).
18. Y-T. Cheng, Z. Li, and C-M. Cheng, Philos. Mag. 82, 1821

(2002).
19. G.I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymp-

totics (Cambridge University Press, Cambridge, 1996).
20. W. Ni, Y-T. Cheng, C-M. Cheng, and D.S. Grummon, GM Re-

search Publication R&D-9522 (April 23, 2003).
21. Y-T. Cheng and C-M. Cheng, J. Mater. Res. 14, 3493 (1999).
22. Y-T. Cheng and C-M. Cheng, Appl. Phys. Lett. 73, 614 (1998).
23. A.E. Giannakopoulos and S. Suresh, Scr. Mater. 40, 1191 (1999).
24. C-M. Cheng and Y-T. Cheng, Appl. Phys. Lett. 71, 2623 (1997).
25. K.A. Gschneidner, Solid State Physics 16, 275 (1964).
26. G. Simmons and H. Wang, Single Crystal Elastic Constants and

Calculated Aggregate Properties: A Handbook, 2nd ed. (The
M.I.T. Press, Cambridge, MA, 1971).

27. General Electric Fused Quartz Products Technical Data, general
catalog number 7705-7725 (April 1985).

28. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296
(1999).

29. W.J. Poole, M.F. Ashby, and N.A. Fleck, Scr. Mater. 34, 559
(1996).

30. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13,
1300 (1998).

31. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeryer,
and M.I. Baskes, ASME J. Appl. Mech. 69, 433 (2002).

32. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).
33. J.G. Swadener, E.P. George, and G.M. Pharr, J. Mech. Phys. Sol-

ids 50, 681 (2002).

APPENDIX

The total work during loading is given by integrating
Eq. (2) from zero to hmax. Although the integration can-
not be made explicitly, the functional form can be ob-
tained as follows,

Wt = �
0

hmax

Fldh = ER2 �
0

hmax

�a�Y�E, �, n,
h

R�dh

≡ ER3���Y

E
, �, n,

hmax

R � , (A1)

where �� is a dimensionless function such that

R
�

�h ���Y

E
, �, n,

h

R� = ���Y�E, �, n,
h

R� .

(A−1a)

During unloading, the force on the indenter (Fu) is
given by Eq. (4). In particular, the final indentation
depth, hf, is obtained by setting the left-hand side of
Eq. (4) equal to zero and solving for hf. Thus,

hf = R���Y

E
, �, n,

hmax

R � , (A2)
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where �� � hf /R, is a dimensionless function of Y/E, �,
n, and hmax/R. The reversible work during unloading is
then given by

Wu = �
hf

hmax

Fudh = ER2 �
hf

hmax

�	�Y

E
, �, n,

h

R
,

hmax

R �dh

≡ ER3���Y

E
, �, n,

hmax

R � , (A3)

where �� is a dimensionless function such that

R
�

�h ���Y

E
, �, n,

h

R� = �	�Y�E , �, n,
h

R
,

hmax

R � .

(A3a)

The hardness, H, defined as the mean contact pressure
under load, is given by

H =
Fmax

Ac
=

Fmax

�a2 =
Fmax

��2Rhc − hc
2�

, (A4)

where a is the contact radius. It is clear from Eqs. (2) and
(3) that the ratio of H to the reduced modulus, E* ≡ E/
(1 − �2), is a function of Y/E, �, n, and hmax/R; namely,

H

E*
= ���Y

E
, �, n,

hmax

R � . (A5)

Likewise, according to Eqs. (A1), (A2), and (A3),
(Wt − Wu)/Wt and hf /hmax are also functions of Y/E, �, n,
and hmax/R.
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