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Interface crack problems with strain gradient effects
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Abstract. In this paper, the strain gradient theory proposed by Chen and Wang (2001a, 2002b) is used to analyze
an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the
dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient
effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of
stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square
root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields
are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate
is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in
materials by decohesion at the atomic scale.
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1. Introduction

Recent experiments have shown that materials display strong size effects when the charac-
teristic length scale is on the order of microns (Fleck et al., 1994; Stolken and Evans, 1998;
Ma and Clarke, 1996; McElhaney et al., 1998; Nix, 1989; Poole et al., 1996; Lloyd, 1994).
The conventional plasticity theory, however, can not predict this size dependence because its
constitutive model possesses no internal length scale.

Elssner et al. (1994) measured both the macroscopic fracture toughness and atomic work
of separation of an interface between a single crystal of niobium and a sapphire single crys-
tal. The macroscopic work of fracture was found to be two to three orders of magnitude
higher than the atomic work of separation. This large difference between the macroscopic
work of fracture and its counterpart at the atomic level was attributed to plastic dissipation
in niobium, i.e., there must be significant plastic deformation associated with dislocation
activities in niobium. However, Elssner et al. (1994) observed that the interface between two
materials remained atomistically sharp. Meanwhile the stress level needed to produce atomic
decohesion of a lattice or a strong interface is typically on the order of 0.03 times the Young’s
modulus, or 10 times the tensile yield stress. But the maximum stress level that can be achieved
near a crack tip is not larger than 4 or 5 times the tensile yield stress of metals, according to
models based on conventional plasticity theories (Hutchinson, 1997). This clearly falls short of
triggering the atomic decohesion observed in Elssner et al.’s (1994) experiments. Attempts to
link macroscopic cracking to atomistic fracture are frustrated by the inability of conventional
plasticity theories to model stress-strain behavior adequately at the small scales involved in
crack tip deformation.
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In order to explain the size effect and the stress field at atomistically sharp crack tip, it is
necessary to develop a continuum theory for the micron level application.

There are significant efforts to develop continuum plasticity models in order to explain the
stress field at the atomistically sharp crack tip, such as SSV model (Suo et al., 1993) and EPZ
model (Needleman, 1987; Tvergaard and Hutchinson, 1992, 1993) and a combined model of
SSV and EPZ models (Wei and Hutchinson, 1999).

An alternative approach that has the potential to bridge the gap between the atomistic
fracture and macroscopic cracking comes from strain gradient plasticity theories. Based on
the notion of geometrically necessary dislocations in dislocation mechanics, several kinds of
strain gradient theories have been developed (Fleck and Hutchinson, 1993, 1997; Fleck et al.,
1994; Nix and Gao, 1998; Gao et al., 1999, Huang et al., 2000a, b). All these strain gradient
plasticity theories introduce the higher order stress which is required for this class of strain
gradient theories to satisfy the Clausiius-Duhem thermodynamic restrictions on the constitu-
tive model for second deformation gradients (Acharya and Shawki, 1995). In comparison, no
higher-order stresses have been defined in the alternative gradient theories (Aifantis, 1984;
Zbib and Aifantis, 1989; Muhlhaus and Aifantis, 1991; Acharya and Bassani, 1995; Chen and
Wang, 2000a, 2001a, 2002a, b; Gao and Huang, 2001; Guo et al., 2001).

As direct application, strain gradient plasticity theory has been used to investigate fracture
of materials. Huang et al. (1995, 1997, 1999), Xia and Hutchinson (1996), Wei and Hutchin-
son (1997), Chen et al. (1998, 1999), Chen and Wang (2000b, 2001b) have investigated the
asymptotic field near a crack tip as well as the full-field solution. It is established that, for the
couple stress theory of strain gradient plasticity proposed by Fleck and Hutchinson (1993) and
Fleck et al. (1994), the stress level near a crack tip is not significantly increased as compared to
that in classical plasticity. For the strain gradient theory proposed by Chen and Wang (2002a),
the stress level near the crack tip is the same as that in HRR field. This is because the effect
of stretch gradients, which is important near a crack tip, has not been accounted for. In order
to incorporate this effect, Chen et al. (1999) have used Fleck and Hutchinson’s (1997) theory
to analyze the crack tip field. Indeed, stretch gradients can elevate the stress level near a
crack tip, as also observed in steady-state crack propagation (Wei and Hutchinson, 1997).
However, Chen et al. (1999) have clearly shown that the asymptotic crack tip field based
on Fleck and Hutchinson (1997) theory gives a surprising compressive stress traction ahead
of a mode I crack tip. This is physically unacceptable since a tensile crack tip should not
have a compressive stress traction ahead of the crack tip. Shi et al. (2000a) also obtained the
analytical full field solution that clearly showed the transition from a remote tensile stress field
to a compressive crack tip in Fleck and Hutchinson (1997) strain gradient theory. Shi et al.
(2000b) investigated the structure of asymptotic crack tip fields associated with the theory of
mechanism-based strain gradient (MSG) plasticity (Gao et al., 1999; Huang et al., 2000a, b)
and concluded the crack tip field in MSG plasticity does not have a separable form of solution.
Using finite element method, Jiang et al. (2001) have successfully analyzed the crack tip field
with MSG theory and have established that the stress level in MSG plasticity is significantly
higher than its counterpart in classical plasticity. Using the new strain gradient theory (Chen
and Wang, 2001a, 2002b), Chen and Wang (2001a, c, d) have successfully investigated the
thin-wire torsion, ultra-thin beam bending, micro-indentation problems and size effects in
particle reinforced metal-matrix composites, the theoretical predictions agree well with the
experimental results. The crack tip field has also been successfully investigated by Chen and
Wang (2002b) and the results are similar to that in Jiang et al. (2001).
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The purpose of this paper is to study interface crack problem using the strain gradient
theory proposed by Chen and Wang (2001a, 2002b) via the finite element method. We will
focus on the increase of stress level around the interface crack tip due to strain gradient effects
in order to explain the observed cleavage fracture in ductile materials (Elssner et al., 1994). In
Section 2, the strain gradient theory used in the present paper is briefly summarized. Without
accounting for the strain gradient effects, numerical results for the crack tip field around an
interface crack between an elastic-plastic solid and a rigid substrate agree well with the results
in Shih and Asaro (1988) in classical plasticity as shown in Section 3.1. The special limit of an
interface crack in the bimaterial between an elastic-plastic solid and a rigid substrate are shown
in Section 3.2. In Section 3.3, numerical results accounting for the strain gradient effects for
an interface crack in a bimaterial of two general elastic-plastic solids are shown.

2. Summary of the strain gradient theory

The strain gradient theory proposed by Chen and Wang (2001a, 2002b) is briefly reviewed
here. It preserves the basic structure of the general couple stress theory and involves no higher-
order stress or higher-order strain rates. Its key features are that the rotation gradient influences
the material behavior through the interaction between Cauchy stresses and couple stresses,
while the stretch gradient explicitly enters the constitutive relations through the instantaneous
tangent modulus. The tangent hardening modulus is influenced by not only the generalized
effective strain but also the effective stretch gradient.

In a Cartesian reference frame xi , the strain tensor εij and the stretch gradient tensor ηijk
(Smyshlyaev and Fleck, 1996) are related to the displacement ui by

εij = 1
2 (ui,j + uj,i) ηijk = uk,ij . (1)

The rotation gradient is related with the independent micro-rotation vectors ωi

χij = ωi,j . (2)

The effective strain, effective rotation gradient and effective stretch gradient are defined as
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in Smyshlyaev and Fleck, (1996).
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Ee is called the generalized effective strain and �e is the work conjugate of Ee; lcs is an intrin-
sic material length, which reflects the effects of rotation gradient on the material behaviors; K
is the volumetric modulus and K1 is the bend-torsion volumetric modulus.

In order to consider the influence of stretch gradient, the new hardening law (Chen and
Wang, 2000a) is introduced
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�̇e = A′(Ee)

(
1 + l1η1

Ee

)1/2

Ėe = B(Ee, l1η1)Ėe, �e ≥ σY ,

�̇e = 3µĖe, �e < σY ,

(6)

where B(Ee, l1η1) is the hardening function; l1 is the second intrinsic material length associ-
ated with the stretch gradient, σY is the yield stress and µ the shear modulus.

The equilibrium relations in V are

σij,j = 0, mij,j = 0 (7)

The traction boundary conditions for force and moment are

σijnj = T 0
i on ST , mijnj = q0

i on Sq. (8)

The additional boundary conditions are

ui = u0
i on Su, ωi = ω0

i on Sω. (9)

3. Numerical analysis of interface crack tip field

In this section, the finite element method for the strain gradient theory (Chen and Wang,
2001a, 2002b) is used to analyze the interface crack tip field. The finite element formula for
this kind of theory can be found in Chen and Wang (2002b) and here is omitted. Several
kinds of interface cracks are considered such as interface crack in the bimaterial between an
elastic-plastic solid and a rigid substrate, interface crack in the bimaterial of two different
elastic-plastic solids.

3.1. COMPARISON WITH SHIH AND ASARO (1988)

In order to verify the finite element program, in this section the strain gradient is not con-
sidered, i.e., l1 = lcs = 0 and the results will be compared with those in Shih and Asaro
(1988). The calculation model is similar to that used in Shih and Asaro (1988). A large plate
is loaded by remote uniform stresses, in which the upper material is elastic-plastic solid and
the lower material is rigid substrate and a center crack exists on the interface. Only the right
half of the deformable medium need to be considered in the finite element analysis since the
problem possesses reflective symmetry with respect to the vertical plane bisecting the crack.
The half-crack length is a, and the half-width and height of the deformable slab is 100a.
The finite-element model is constructed using 9-node quadrilateral Lagrangian elements and
3 × 3 Gauss points are used. The remote loading is expressed by σ∞

22 and σ∞
11 . We take the

following loading as that used in Shih and Asaro (1988),

σ∞
11 = ν1

1 − ν1
σ∞

22 , (10)

where ν1 is the Poisson ratio and we take ν1 = 0.3 in the calculation.
The calculation results agree very well with those in Shih and Asaro (1988). When the

external loading is very small, σ∞
22 /σY=2.0 × 10−5, the plastic zone is confined to a distance

of about 10−11a, the small strain asymptotic field for an interface crack is characterized by
oscillatory stresses and the oscillate can be significant fractions of the crack length, which
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Figure 1. Finite element mesh for an interface crack between a deformable material and a rigid substrate and only
half of the deformable material is needed.

has been obtained by Shih and Asaro (1988). The stress is negative within the plastic zone,
the slope of the curve becomes positive for r/a < 10−14. At a higher load level, σ∞

22 /σY =
6.0 × 10−3, the hoop stress increases monotonically over the entire distance under discussion,
i.e., there is no trace of an oscillatory field.

3.2. INTERFACE CRACK IN A BIMATERIAL BETWEEN AN ELASTIC-PLASTIC SOLID AND

A RIGID SUBSTRATE

The interface crack with a rigid substrate is often found in engineering problems and here
this special kind of case is calculated and the strain gradient is considered. A finite square
plate subject to uniform tensile is considered and the calculation model is shown in Figure 1,
in which only the right half of the deformable medium is considered. The half of the crack
length is a and the width of the calculated model is 10a. On the boundary of y = 0, all the
nodes are fixed in x and y direction. On the boundary of y = 10a, only normal stress σ∞

22 is
imposed. On the left boundary, all the nodes are fixed in x direction for symmetry. Traction for
both the force and moment is free on the right boundary. During the calculation the parameters
of the upper material are σy/E = 0.2%, v = 0.3, n = 0.2.

In all the calculation, we take lcs = 1 µm and stresses σij are normalized by the yield
stress σy in uniaxial tension, while the distance r to the crack tip is normalized by the internal
material length lcs in the strain gradient theory proposed by Chen and Wang (2001a, 2002b).
The normalized remotely applied stress is σ∞

22 /σY .
Figure 2 shows the normalized effective stresses, σe/σY , versus the non-dimensional dis-

tance to the crack tip, r/ lcs , ahead of the crack tip (at polar angle θ = 3.15◦) predicted by the
Chen and Wang’s strain gradient theory. The remotely applied stress is σ∞

22 /σY = 1
6 . There are

four kinds of cases in Figure 2, in which three results are corresponding to different relations
of lcs and l1, the other one is for the classical theory. Since the material length lcs is taken prior,
the value of l1 for each case is known also. The horizontal line σe/σY = 1 separates the elastic
and plastic zones for each curve. Outside the plastic zone and r/ lcs < 5, both the present
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Figure 2. Plots of the normalized effective stresses, σe/σY , near the polar angle of θ = 3.15◦ versus the
normalized distance r/lcs with different material length l1.

strain gradient theory and the classical plasticity theory give the same straight line with slope
− 1

2 , which corresponds to the elastic K field. As r/ lcs > 5, there is an elastic field, which is
influenced by the outer boundary. From Figure 2, one can find the interface crack tip field is
significantly influenced by the material length l1 while l1 ≥ 0.01 µm. When l1 > 0.1 µm, the
HRR type field seems to vanish, there is no HRR type field, which is different from the results
for crack tip field in homogeneous material (Jiang et al., 2001; Chen and Wang, 2002b). We
call the plasticity zone in this kind of interface crack tip as the generalized plasticity zone. This
interesting phenomena may be due to the intrinsic properties of the interface crack between
an elastic-plastic solid and a rigid substrate. Since the lower material is rigid substrate, the
material points along interface in both directions are fixed, which results in the greater strain
gradient along y direction near the interface. Hence the strain gradient could be larger than
that in the homogeneous material. From Figure 2, one can see that the length scale l1 has no
effect on the size of the plastic zone size while the applied stress is the same. Since there is
hardly classical plasticity zone existing for the strain gradient theory, the generalized plastic
domain like the classical plasticity zone will increase accompany with the increasing external
load. While the value of material length l1 decrease, the result tends to the classical solution,
which reflects that the length scale l1 plays an important role in crack tip field.

Figure 3 shows the normalized effective stress σe/σY at polar angle θ = 3.15◦, versus
the non-dimensional distance to the crack tip r/ lcs for three levels of remotely applied stress,
σ22/σY = 1

12 , 1
6 and 1

3 . The relation l1 = lcs is taken and the other parameters are the same
as that in Figure 2. The deformation outside the plastic zone is essentially the elastic K field,
as evidenced by the straight line with the slope of − 1

2 for large r, then it tends to be the zone
influenced by the out limit boundary. At a small distance r to the crack tip, all curves approach
to another set of straight lines, with the absolute value of the slope larger or equal to 1

2 . This
confirms that the singularity of the crack tip stress field in Chen and Wang’s strain gradient
theory is stronger than the classical field. It is also observed from Figure 3 that the plastic zone
size increases rapidly with the applied loading and there is no classical HRR type field, it is
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Figure 3. Plots of the normalized effective stress σe/σY at θ = 3.15◦ versus the distance to the crack tip r/lcs for
three levels of applied stress, σ∞

22 /σY = 1
12 , 1

6 and 1
3 .

Figure 4. Plots of the effective stress distribution ahead of the crack tip with various hardening exponents n = 0.1,
0.2, 0.333.

different from that in Jiang et al. (2001) and Chen and Wang (2002b) for the crack tip field
in homogeneous material and in which the strain gradient dominated zone increases relatively
slow with the applied loading, while the whole plastic zone size increases rapidly with the
applied loading.

Figure 4 shows the normalized effective stresses versus the non-dimensional distance to
the crack tip r/ lcs with different hardening exponents n = 0.1, 0.2 and 0.3, respectively. The
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Figure 5. Finite element mesh of an interface crack in finite width plate and only half of the deformable medium
is needed.

remotely applied stress is the same as that in Figure 2 and l1 = lcs . One can find the effect
of plastic work hardening on the effective stress distribution ahead of the crack tip (polar
angle θ = 3.15◦). One interesting observation is that, at small distance r to the crack tip, all
curves approach straight lines that have the same slope. This means the interface crack tip
singularity in Chen and Wang’s strain gradient theory is essentially independent of the plastic
work hardening exponent, which is the same as that in Jiang et al. (2001) and Chen and Wang
(2002b). Furthermore, the larger the hardening exponents, the higher the effective stress near
the crack tip in the strain gradient dominated domain with the same external loading.

3.3. INTERFACE CRACK IN A BIMATERIAL OF TWO GENERAL ELASTIC-PLASTIC SOLIDS

In this section, the interface crack tip field in a bimaterial of two elastic-plastic solids is inves-
tigated. Also, we take a finite width plate as the calculation model, which is shown in Figure 5.
Only half of the deformable medium needs to be considered in the finite element analysis due
to the possesses reflective symmetry. The lower material is designated as material 1 and the
upper material is designated as material 2. The mesh division is the same as that in Figure 1
except the lower deformable part is meshed.

Here, we assume that both materials have the same elastic properties but different plastic
properties. The parameters are taken as follows: σy/E = 0.2%, v = 0.3, n1 = 0.3, n2 = 0.1,
l1 = lcs . The applied load is σ∞

22 = σY/6, the traction for moment vanishes along the whole
outside boundary.

Figures 6 and 7 show the normalized effective stresses, σe/σY , along the polar angle of
θ = −3.15◦ and θ = 3.15◦ versus the normalized distance r/ lcs for the lower material 1
and upper material 2, respectively. The corresponding stress distribution in classical plasticity



Interface crack problems with strain gradient effects 33

Figure 6. Plots of the normalized effective stress σe/σY at θ = −3.15◦ versus the distance to the crack tip r/lcs
in the lower deformable material.

Figure 7. Plots of the normalized effective stress σe/σY at θ = 3.15◦ versus the distance to the crack tip r/lcs in
the upper deformable material.

(without strain gradient effects) is also shown in Figures 6 and 7. It is observed that, out-
side the plastic zone (as determined by σe/σY ≤ 1), both the gradient theory and classical
plasticity theory give the same straight line slope − 1

2 , corresponding to elastic K field. But
it is also different from the solution to crack tip field in homogeneous materials that there
is no HRR type field within the plastic zone. Once the plasticity is produced the effects of
strain gradient are very large, which is due to the stiffness difference between the upper and
lower material. The generalized plastic zone size can not be predicted because it changes as
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Figure 8. Plots of the stress components of classical plasticity solution at some distance from the crack tip versus
the angle.

the external loading changes. Comparing Figure 6 with Figure 7, we can find that though
the singularity in the strain gradient dominated domain is hardly related with the hardening
exponents, the value of the effective stress is influenced by the hardening exponents and the
larger the hardening exponents, the larger the effective stress in the strain gradient dominated
domain for the interface crack tip field.

To develop a better understanding of the interface crack tip field with strain gradient, we
give the angular distribution at some distance from the crack tip and within the generalized
plastic zone. Figures 8 and 9 show the stress component distributions versus the polar angle
without and with strain gradient effects, respectively, and the stress distributions in these two
figures lie on the same radius. One can find that the absolute maximum value of each stress
components increase significantly while the effects of strain gradient are considered. It should
be pointed out that due to no higher order stresses included in the strain gradient theory (Chen
and Wang, 2001a, 2002b), the stress components σθθ and σrθ ahead of the crack tip and on
the crack free faces is the same as the corresponding stress traction. From Figures 8 and 9,
we can find that both the stress components σθθ and σrθ on the crack free faces are zero
strictly and meet the boundary conditions. Furthermore the stress components σrr and σe at
the interface are discontinuous but the other stress components are continuous. Comparing
these two figures, one can also find that the discontinuity of the stress components for the
strain gradient theory are larger than that for classical plasticity theory, which denotes that the
influences of the strain gradient effects on the stresses for materials with different hardening
exponents are stronger than the influences of different hardening exponents on stresses.

4. Conclusions

This paper mainly presents a study of plane strain interface crack tip field at microscale based
on the strain gradient theory proposed by Chen and Wang (2001a, 2002b). For remotely
imposed tension loading, several kinds of full field solutions are obtained numerically for
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Figure 9. Plots of the stress components with strain gradient effects at some distance from the crack tip versus the
angle.

different interface cracks, such as interface crack between two different deformable materials
and interface crack between a deformable material and a rigid material.

It is found that the stresses near an interface crack tip are significant influenced by strain
gradient effects. Under small scale yielding condition and l1 > 0.1 µm, the remote classical
K field goes directly to the near tip strain gradient dominated zone without a classical plastic-
ity field. The material length scale l1 has an important influence on the interface crack tip field
and once the plasticity is produced, the effects of strain gradient dominate the field, which is
different from that in homogeneous material. The singularity of the stress field in the strain
gradient dominated domain is independent of the material hardening exponents and is equal
to or larger than r−1/2.

At a distance that is much larger than the dislocation spacing such that continuum plasticity
is expected to be applicable. The near tip stresses predicted by the strain gradient theory are
significantly higher than that in HRR field. The increase in the near tip stress level provides an
explanation to the experimental observation of cleavage fracture in ductile materials (Elssner
et al., 1994). The classical plasticity theories fail to predict the stresses needed for cleavage
fracture, while the significant stress increase in Chen and Wang’s strain gradient theory seems
to be capable of bridging the gap between the macroscopic cracking and atomistic fracture.
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