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Abstract

By sample speci®city it is meant that specimens with the same nominal material parameters and tested under the

same environmental conditions may exhibit di�erent behavior with diversi®ed strength. Such an e�ect has been widely

observed in the testing of material failure and is usually attributed to the heterogeneity of material at the mesoscopic

level. The degree with which mesoscopic heterogeneity a�ects macroscopic failure is still not clear. Recently, the

problem has been examined by making use of statistical ensemble evolution of dynamical system and the mesoscopic

stress re-distribution model (SRD). Sample speci®city was observed for non-global mean stress ®eld models, such as the

cluster mean ®eld model, stress concentration at tip of microdamage, etc. Certain heterogeneity of microdamage could

be sensitive to particular SRD leading to domino type of coalescence. Such an e�ect could start from the microdamage

heterogeneity and then be magni®ed to other scale levels. This trans-scale sensitivity is the origin of sample speci®city.

The sample speci®city leads to a failure probability UN with a transitional region 0 < UN < 1, so that globally stable and

catastrophic modes could co-exist. It is found that the scatter in strength can ®t the Weibull distribution very well.

Hence, the Weibull modulus is indicative of sample speci®city. Numerical results obtained from the SRD for di�erent

non-global mean stress ®elds show that Weibull modulus increases with increasing sample span and in¯uence region of

microdamage. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Diversi®cation of material strength has been
observed for a long time. A number of statistical
theories have been proposed to explain such a
phenomenon. Among them is the Weibull distri-
bution for a chain consisting of links in series [1].
This approach [2,3] makes use of the statistical
theories of ®ber bundles. It was indicated in [2]
that the strength of the ®ber bundles tends to

follow the normal distribution, provided that
the load re-distribution is globally uniform and the
®bers are in®nite. In material engineering, the
Weibull modulus mf has been used as a measure of
strength diversity for years. For most metals, it is
over 20 while for ceramics it is usually less than 10.
The measurement of mf is a time consuming task.
More precisely, the physical implication of
strength diversity remains to be understood.

The transition from damage accumulation to
failure of materials has been attributed to meso-
scopic heterogeneity. Sample speci®c behavior for
specimens tested under identical macroscopic
conditions shows that the failure of the specimens
do occur at various critical threshold. It has been
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known that neither percolation nor re-normaliza-
tion group theories widely used in equilibrium
transition could describe the phenomenon prop-
erly [4±6]. The underlying mechanism arises from
the contingent sensitivity of the non-linear evolu-
tion to mesoscopic con®guration of samples [6,7].
This implies that there prevails a group of sensitive
states: their minor perturbation could lead to di-
versi®cation via successive evolution. This results
in divergent and contingent behavior. In what
follows, statistical ensemble evolution of dynami-
cal systems as governed by SRD is used in order to
show how mesoscopic heterogeneity and stress re-
distribution a�ect macroscopic failure and hence
strength diversi®cation.

2. Stress re-distribution model (SRD)

Damage evolution owing to re-distribution of
mesostress contributes to the scatter of material
strength. Such a behavior will be examined by
making use of statistical ensemble evolution of
dynamical system, in conjunction with the meso-
stress re-distribution model. The model consists of
a periodical chain with a period of N parallel sites
X � �xi; i � 1; 2; . . . ;N� [8,9]. Here, N is a dimen-
sionless span between mesoscopic unit and mac-
roscopic sample. There are two options for each
site, xi � 0 and xi � 1 that denote unbroken and
broken sites, respectively. n �PN

i�1 xi is the total
number of broken sites and p � n=N is the damage
fraction. The sum of states in the phase space of
the chain XN has to be calculated according to a
combined theory. For example, XN � 52488 for
N � 20 and XN � 8:03� 1057 for N � 200. Clear-
ly, this is a huge ensemble.

The dynamics of damage evolution requires a
knowledge of the condition under which a partic-
ular site would break. This causes the stress to re-
distribute. This corresponds to the core in the
SRD models. Suppose that all sites have the same
strength rc. That is to say, a unit will break, if the
local stress r becomes greater than its strength rc.
Hence, the stress becomes non-uniform following
a particular evolution of damage pattern. In order
to cover di�erent types of stress re-distribution,
consider the following SRD models.

2.1. Global mean ®eld (GMF) model

This model assumes that the load is always
uniformly shared by all unbroken sites, i.e., for a
chain with damage fraction p, a uniform stress r is
given by r � r0=�1ÿ p�, where r0 is the nominal
stress. The macroscopic strength rf of a sample
with initial damage fraction p0 can then be ob-
tained as rf � �1ÿ p0�rc. Inversely, for a sample
under a nominal stress r0, the failure threshold
with damage fraction pc is determined by
pc � 1ÿ �r0=rc�. This indicates that for the GMF
model speci®city is absent.

2.2. Stress concentration (SC) model

On the two sides of a broken cluster, there
prevails in¯uence regions d, where unit breaks due
to stress concentration. This model assumes stress
elevation arising from a hole or a crack tip.
Clearly, the largest cluster of broken sites would
correspond to the highest stress concentration and
the origin of eventual failure. It follows that the
largest broken cluster is the most sensitive micro-
structure. If it could be monitored, it would be
possible to predict failure. Failure governed by this
model shows sample speci®city. For its failure
prediction, more information on mesostructure is
required than that of the GMF model, which de-
pends only on a knowledge of initial damage
fraction p0 and site strength rc. For simplicity, a
local mean stress concentration (LMSC) model
with in¯uence region d will be discussed.

2.3. Cluster mean ®eld (CMF) model [8,9]

The nominal stress of broken cluster is shared
uniformly by its two neighboring clusters. That is
to say, a site in an s-intact cluster separating an
l- and r-broken cluster supports a stress, Fig. 1:

r � 1

�
� l� r

2s

�
r0: �1�

The site-breaking condition can thus be expressed
by

L � 2s
1� r

6 r0

rc ÿ r0

� Lc; �2�
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where L and Lc are dimensionless and critical lig-
aments, respectively. This model provides a
quantitative assessment of the interaction between
the neighboring broken cluster. In this case, the
mesostructure that is sensitive to eventual failure is
not clearly identi®ed with the largest cluster of
broken sites in SC model. The sensitive structure
can only be revealed during the course of damage
evolution. For example, the series of breaking is a
sensitive structure:

sj � Int��j� 1� Rsj�Lc=2�; �3�

when Lc � 1; sj � 1; 2; 3; 5; 8; 13; 20; 30; . . . ; is sim-
ilar to Fibonacci series [9]. Clearly, complexity of
speci®city is caused by interaction of broken
clusters.

3. Sample speci®city and failure probability

Loosely speaking, non-linear evolution leads to
two di�erent modes of pattern ¯ow in phase space
according to their ®nal states. They are the global
stable (GS) type, where damage occurred but not
fracture and evolution induced catastrophe (EIC),
where complete fracture [6] has taken place. Ac-
cording to the models LMSC and CMF, stress
¯uctuations can always occur owing to random
distribution of broken sites as a result of meso-
heterogeneity. The stress distribution changes with
the evolution of damage pattern. Hence, for the
CMF, GS or EIC cannot be evaluated by the

macroscopic parameters involving the initial
damage fraction p0 and nominal stress r0. In other
words, the system shows sample-speci®c behavior,
i.e., macroscopic uncertainty while the formula-
tion of failure should be statistical.

The probability of EIC modes, i.e., the failure
probability UN �p0; r0� should be known. An ex-
amination of evolution of all points in phase has
been carried out for short chains, such as N 6 30
and long chains by means of the slice sampling
method [8±10].

For the GMF model, there is a deterministic
and clear-cut boundary between GS (UN � 0) and
EIC (UN � 1) modes as given by

r0 � �1ÿ p0�rc: �4�

The curves in Fig. 2 display the variations of the
normalized stress r0=rc with the initial damage
fraction p0 for the transitional region. The curves
for UN � 0 and UN � 1 correspond, respectively,
to the GS and EIC mode for CMF model with
N � 200. Here, the failure can be determined
uniquely by the macroscopic parameters. Howev-
er, for all other models with stress ¯uctuations,

Fig. 2. Failure probability UN �p0; r0� showing the transitional

region.

Fig. 1. Sketch of cluster mean ®eld (CMF) model.
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such as LMSC and CMF, there is a transitional
region 0 < UN < 1 between the GS (UN � 0) and
EIC (UN � 1) regions in the macroscopic param-
eter space (p0; r0), Fig. 2. In the transitional region,
GS and EIC modes co-exist. Macroscopic uncer-
tainty of failure shows up.

4. Diversi®cation of strength

Let the nominal stress r0 be increased gradu-
ally. Observe the transition of the sample from the
GS to EIC mode and determine the ultimate
strength rf . The distribution density of ultimate
strength f �rf� can be calculated. As usual, an ef-
fective width of the strength distribution can be
de®ned as

Drf�N ; p0� �
Z 1

0

�rf

�
ÿ �rf�2 f �rf ; N ; p0� drf

�1=2

:

�5�
The average strength of the chain is

�rf�N ; p0� �
Z 1

0

rf � f �rf ; N ; p0� drf : �6�

There is also an approximate scaling law

Drf � gNÿc �7�
and g � 0:1032 is in the range of N � �101±103�.
Drf=�rf is around 0.1. This demonstrates the im-
portance of strength diversi®cation.

The problem can be formulated in a di�erent
way by adopting one-dimensional periodical chain
that behaves according to SRD, especially CMF
and LMSC. Instead of assuming an initial damage
fraction p0, and constant site strength rc, a pre-
scribed distribution density of site strength c�rc) is
used together with Weibull function having ex-
pectation of 1 and modulus mc. Note that this is a
distribution of mesostrength rc. With the numeri-
cal simulation of damage evolution of samples, the
macrostrength rf is obtained. Finally, the macro-
strength of samples can be ®tted by a Weilbull
distribution:

W �rf ; N ; d� � 1ÿ exp

�
ÿ rf

g

� �mf
�
: �8�

Besides the two ®tting parameters g and mf (Wei-
bull modulus), there are three others involving the
sample span N, the size of in¯uence region d and
the modulus mc of distribution c�rc� that measure
the initial mesoheterogeneity. Fig. 3 shows a
Weibull distribution ®tting for data from 2000
samples using the CMF model with N � 5000 and
mc � 2. Note that the Weibull distribution ®ts the
data very well for mf � 19:0.

Diversi®cation of macrostrength is due to the
amplifying e�ect of mesoheterogeneity during non-
linear evolution. Fig. 4 shows how the Weibull
modulus of macrostrength mf increases with that
of mesostrength mc for N � 2000.

The dependence of Weibull modulus of mac-
rostrength mf on the sample span N is given in
Fig. 5 for the CMF model with mc � 2; it in-
creases rapidly at ®rst and then levels o� after
N > 2� 104. This indicates that large sample span
N can improve the strength diversity. Similar
trend is found for the Weibull modulus of mac-
rostrength mf with increasing size of in¯uence

Fig. 3. Weibull distribution ®t for macrostrength.
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region d, Fig. 6. It is noteworthy that if the size of
in¯uence region d is greater than the spacing be-
tween two adjacent broken clusters, the load

would be uniformly supported. This corresponds
to the stress re-distribution of CMF model.
Hence, it is not surprising that LMSC model be-
haves as that of CMF (Fig. 6), when d tends to the
chain size.

5. Concluding remarks

The following conclusions can be made:
· Sample speci®city is observed for various SRD

such as those of cluster load sharing, stress con-
centration, etc., except the global mean ®eld
model that sweeps away all mesoheterogeneity
and fails to look at the problem of sample spec-
i®city.

· Di�erent SRD re¯ects di�erent sensitive to het-
erogeneity. Due to the interaction between bro-
ken clusters, the cascade of damage evolution
magni®es the e�ect of initial heterogeneity and
demonstrates complex speci®city, a statistical
description of which is the failure probability
U of macroscopic parameters.

· Due to sample speci®city, there prevails a di-
versity of macrostrength that could be ®tted
to a Weibull distribution. It is found that Wei-
bull modulus increases with increasing sample
span, mesoscopic heterogeneity and in¯uence
region.

Fig. 5. Weibull modulus of macrostrength versus dimensionless

chain span for mc � 2.

Fig. 6. Weibull modulus of macrostrength versus in¯uence

region size for N � 2000 and mc � 2.

Fig. 4. Weibull modulus of macrostrength versus that of meso-

strength for N � 2000.
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