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Summary. The dynamic response of a finite crack in an unbounded Functionally Graded Material 
(FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modu- 
lus of the functionally graded material is modeled by a quadratic increase along the direction perpendicu- 
lar to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of 
the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a 
numerical Laplace inversion technique. The influence of graded material property on the dynamic inten- 
sity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite 
crack in such a functionally graded material is less than in the homogeneous material with a property 
identical to that of the FGM crack plane. 

1 Introduction 

In recent years the concept of Functionally Graded Materials (FGMs) has been introduced to 

the development of structural components. The advantages of FGMs are that the materials 

can resist corrosion, radiation and high temperatures more effectively and, at the same time, 

the residual and thermal stresses in the materials can be relaxed significantly. Due to these 

advantages, the interests in FGM research are growing rapidly. It is obvious that FGMs are 

becoming an important area in the development of advanced composite materials. 

For many engineering applications the components made of FGMs could be subjected to 
time-dependent loadings. The graded material properties of the FGM in addition to the pre- 

sence of mechanical imperfections, such as cracks, can have a strong influence on the dynamic 

response of these components. A good knowledge of the dynamic response of this kind of 

components is essential to achieving an in depth understanding of the failure mechanisms of 
the FGM. Although significant attention has been paid to various theoretical and practical 

aspects of the mechanical behavior of FGMs and there has also been a considerable bulk of 
studies on the fracture of FGMs [1], reports on their dynamic fracture mechanics are still very 

few. Among this limited studies, Nakagaki and his co-workers [2] made a numerical treatment 

of fracture occurring in an FGM under dynamic load. Parameswaran and Shukla [3] studied 
dynamic fracture in FGMs having discrete property variations using dynamic photoelasticity. 

Babaei and Lukasiewicz [4] investigated the dynamic response of a crack in an FGM between 
two dissimilar half planes under antiplane shear impact by using dual integral equations. An 
exponential function for the variation of material properties was used in their article. Wang 
and his co-workers [5] considered the dynamic fracture mechanics analysis for a composite 



2 C. Li et al. 

material with a material inhomogeneity in the thickness direction. They used the model of 
stacked homogeneous layers and the singular integral equation technique. Li and Zou [6] 
reported the torsional impact response of an FGM with a penny-shaped crack by using dual 
integral equations. 

In this paper, we present the antiplane impact response of an unbounded F G M  with a 
Griffith crack. The main objective is to investigate the effect of material inhomogeneity on the 
dynamic response of FGMs with cracks. By using Laplace transforms for the time variable 
and Fourier transform for the space variable, the problem is reduced to a pair of dual integral 
equations. Following the procedure of Copson [7], the solution of the dual integral equations 
is expressed with a Fredholm integral equation of the second kind. The dynamic stress inten- 
sity factor is extracted from the asymptotic expansion of the stresses around the crack tip in 
the Laplace transformed plane. The dynamic stress intensity factor in the time domain is 
obtained by the Laplace numerical inversion technique. The influence of material inhomo- 
geneity on the dynamic stress intensity factor is demonstrated graphically. 

2 Formulation of the problem 

Consider an unbounded functionally graded material to which a rectangular xyz-coordinates 

system is attached, as shown in Fig. 1. Assume a finite crack of length 2a is situated in the 
y = 0 plane and subjected to an antiplane shear impact. Let the components of the displace- 
ment in the x, y and z directions be labeled by u~, uy and Uz, respectively. For antiplane shear 
motion, ux and uy vanish everywhere and Uz is a function of x, y and t, i.e., 

~ = ~ = 0 ,  ~z = w(x,y ,~) ,  (~) 

where t is time. Assuming that the material is isotropic, the nonvanishing stress components 

rxz and ~-yz are as follows: 

Ow Ow 
T= = ~(~) ~ , ~ = , ( y )  ~ , (2) 
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Fig. 1. Crack geometry and stress 
components 
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where p(y) is the position-dependent shear modulus. The equation of motion can be written 

a s  

o 2 ~  o 2 ~  . % )  o ~ _  ~(y) o ~  
Ox 2 ~ ,(y) oy ,(y) ot2 ' (a) 

where , ' (y )  is the derivative of #(y), and •(y) is the mass density of the FGM. 
Suppose that the material is initially at rest. At time t = 0, an antiplane shear stress of 

magnitude % is suddenly applied to the crack surfaces and maintained at the same constant 
value thereafter. Hence, the boundary conditions are given as follows: 

~>(x,  o , t )  = - ~ o H ( t ) ,  0 _< Ixl < ~; t > 0 ,  (4) 

wQx,0,~) : 0, 1< -> ~; t > 0, (5) 

where H(t)  is the Heaviside unit step function. The initial conditions are zero. 

3 Material property models 

There are two material parameters involved in this problem: the shear modulus # and the 
density 0. Due to the mathematical complexity it is necessary to assume that the shear modu- 
lus and the mass density can vary independently. Such an idealization can offer considerable 
simplifications to the analysis. In static problems, several models have been proposed for 
describing the variation of #. One of them is a power function, 

, ( y )  = PolY] m, 0 < m < l .  (6) 

This model was used by Sih and Chen [8], but it has an undesirable feature that at y = 0 the 
shear modulus becomes zero. The second model is an exponential form of the type 

. (y )  = .0 exp (~y). (r) 

This model was extensively used by Erdogan and his co-workers for inhomogeneous elastic 
materials with cracks subjected to mechanical loadings [9]-[11], and by Noda and his co- 
workers for crack problems in inhomogeneous thermoelastic solids under thermal loadings 
[12], [13]. The third model is a linear function 

, (y )  -- ,0(1 + ~lyl). (8) 

proposed by Gerasoulis and Srivastav [14], and the fourth model is 

. ( y )  = (a + by) ~ , (9) 

proposed by Wang and his co-workers [15] for studying the problems of an interface crack in 
composites with an inhomogeneous interlayer. 

However, in order to obtain the dynamic response of an inhomogeneous FGM, most of 
the models will present considerable difficulties due to the presence of the inertia term. We 
have found that the variation 

. ( y )  -- . o (1  + ~lyl) 2 , ~ > o; ~ -- constant (10) 

is mathematically tractable, and still physically representative enough. In the above equations, 
.o is the value at y = O. 
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We realized that, by taking o as constant, it is an idealization, but in some practical sys- 
tems, such as TiC/Ti or TiB2/Ti, the variation of the mass density is almost constant. In any 
event, we find that with this model several interesting features of the dynamic fracture pro- 
blem in FGMs can be brought to light. 

4 Derivation of integral equation 

The standard Laplace transform on f(t) is 

(X3 

f*(p) = / f(t)e -vt dr, (11) 
o 

0 

whose inversion is 

f(t) = ~ f*(p)ePt dp, (12) 

Br 

where Br denotes the Bromwich path of integration, which is a line on the right-hand side of 
the p-plane and parallel to the imaginary axis. Applying Eq. (11) to Eq. (3) and noting that 
the mass density is now a constant, we obtain the transformed equation 

02w * O2w * #'(y) Ow*_ gp2 w* (13) 
ox2 + UC-v ~ + ~(v) ov  ~(v) " 

Considering the symmetry of the problem about x and y, we only need to consider the first 
quadrant of the x-y plane. Introducing the pair of Fourier cosine transforms 

if(s) = ? f(x) cos (sx) dz, 
0 

O 0  

O 

and defining 

o o  

0 

then Eq. (13) can be transformed into 

o2u(~,y,p) ~'(y) ou(~,y,;) [ +~p2] 
o y  2 ~ ,(y~ oy  s 2 ,(y)j u ( ~ , y , p )  = o .  

Substituting (10) into (17), we obtain 

23 OU(s,y,p) [ 02U(s'y'P) § l +ay Oy s2-~ 
Oy 2 

By defining 

X = 4 1  + a y ) ,  Y = (1 + ay)U2U, 

(14) 

(15) 

(16) 

(17) 

Op2 -] U(s, y, p) = O. (18) 
#o(1 + ay) 2 i 

(19) 
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Eq. (18) can be rewritten as 

d2Y l d Y  [1 /3X_~J dX z +X dX ~Z + Y = 0, (20) 

where 

U -  o/) 2 
= / / ~ +  (21) 

/~0 c~2 ' v ~ 

It can be seen that Eq. (20) is a standard modified Bessel differential equation. 
F rom the solution of the modified Bessel Eq. (20) and considering the regularity condition 

at y --+ oo, the solution of  Eq. (18) can be expressed as 

U ( s , ~ , ; ) =  d ( s , ; ) ( l  + ~ y )  ~1~ l + ~ y  , (22) 

where KZ0  is the modified Bessel function of  the second kind. 
Substituting Eq. (22) into Eq. (16), we obtain 

2 ee 8 

w*(x,y,p) = ~ 1 A(s,p)(1 +ay)-I/'Kj[(l + ozy)~J cos(sx) ds. 
0 

(23) 

Then f rom the Laplace t ransformations of  the stresses ryz and mxz, we obtain 

~ ( x , v , p )  = ~(v) A(s ,p)  - 

0 

(24) 

s i n  ( s z ) s  ds %~(x, y,p) = -p(y) 7 A(s,p)(1 + ozy)l/2K~ (1 + ay)~ 
0 

(25) 

where K j 0  is the derivative of  K ~ 0  with respect to y. 
In the Laplace t ransform domain,  the conditions on the plane y = 0 become 

7"O 
%,L(z, 0 , p )  - , 0 <_ z < a. ,  

p 

w*(x ,O,p)  = O, z >_ a.  

(26) 

(27) 

From Eqs. (23), (24), (26) and (27), a pair of  dual integral equations is obtained as 

/ B ( ~ , p )  c o s  ( 8 . . )  d~  : o ,  x _> ~, 
0 

(28) 

f ~ B ( ~ , p ) G ( ~ , p )  c o s  ( ~ x )  d~  - ~ - o  
2#0p ' 

0 

O<x<a, (29) 
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where 

G ( s , p )  = 2 ~ \o~J 
8 

(30) 

(31) 

The dual integral Eqs. (28) and (29) can be solved by applying the method of Copson [7]. It is 
found as following: 

1 

~-~ f ~/~ ~* (~, p)Jo(~) d~, (32) B(s ,p ) -  2#op 
0 

where J0 is the zeroth-order Bessel function of the first kind and the function qs*(~,p) is gov- 
erned by a Fredholm integral equation of the second kind, 

1 

e*(~, ;) + f r162 p) M (r ~, p) dv = x/~. 
0 

(33) 

The kernel function M(~, ~,p) in Eq. (33) is 

0 

(34) 

5 Dynamic stress intensity factor 

As in the static case, the amplitude of the stress field around the crack tip in the dynamic 
situation is measured by a stress intensity factor, which varies as a function of time. The 
Laplace transform of the dynamic stress intensity factor can be extracted from the asymptotic 
expansion of the stresses around the crack tip in the Laplace transform domain. 

Let B(s, p) be expressed as 

(3~) 

(36) 

(37) 

From Eqs. (35), (30), (24) and (25) and considering that when s -+ ec, which is corresponding 
to the crack tip in the Laplace domain, we have the following asymptotic behavior of K~(s) 
and K~'(s) : 
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Consequently we obtain 

52(x,y,;) - - -  #0 P 0 Kfl(~) Jl(Sa) cos(sx)d8 +. . .  

oo 

Toa#(y ) e*(1,p) (1 + o~y) -I / Jl(Sa) exp (-sy)cos (sx) ds 4-... , 
#o P 

0 

(a8) 

G ( x , y , p )  - - -  - -  

TOa#(y ) ~*(1,p) ~(1 4-c~y) 1/2Kfl [(1 --o~y)~] Jo ~(~ Jl(Sa) sin(sx)ds+. 

oo 

Toap(y) e*(1,p)(1 / + aY) -1 J1 (sa) exp (-sy) sin (sx) ds + . . . .  
#o P 

0 

(39) 

Evaluation of the integrals in Eqs. (38) and (39) yields 

f J l ( sa)exp(_sy)cos(sx)ds  1 1 r ( 1 1 ) --  COS 0 - -  01 02 (40)  a ~ ~ - 5  ' 
0 

j 1 r s i n ( 0  1 1 ) J l (sa)exp(-sy)s in(sx)ds-  ~ a  - - 2 0 1 - - 2  02 ' (41) 
0 

The polar coordinates r, rl, r2, 0, 01 and 02 are defined in Fig. 1. 
Substituting Eqs. (40), (41) and (10) into Eqs. (38) and (39) and letting r ~ a, 0 ~ 0, 

02 ---, 0 and r2 ~ 2a, we obtain the local stress field 

K b ( p )  
Ty<(Tl,Ol,p) -- 

K b ( ; )  
T;z(Tl,01,p) -- 2%/#~1 - - s i r l  (43) 

The Laplace transform 

K;H(p) : vov/~ @*(I, 
P 

of the dynamic stress intensity factor K~uz(p) in Eqs. (42) and (43) is 

;) 
- - ,  (44) 

where ~* (1, p) is the value of ~* (~, p) evaluated at the crack tip corresponding to ~ = 1. 
The dynamic stress intensity factor in the time domain can be obtained by 

1 / @*(1,p) ePtdp. 

Br 

(45) 
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Fig. 2. Variation of ~*(1,p) with 

Fig. 3. Normalized dynamic stress 
intensity factor KIH(t)/TOX/~d ver- 
sus time 

6 Results and discussion 

The functional dependence of the stresses on rl and 01 as shown in Eqs. (42) and (43) reveals 
that the dynamic stresses in functionally graded materials with cracks also possess the inverse 
square root singularity in terms of rx and that the angular distribution in 01 is the same as in 

the case of homogeneous solids with cracks. 
Equation (45) shows that the expressional form of the dynamic stress intensity factor for 

functionally graded materials is identical to that for homogeneous materials. However, the 
value of the dynamic stress intensity factor for a crack in a functionally graded material is dif- 
ferent from that for a crack in a homogeneous material. 

By using the numerical Laplace transform inversion scheme described by Miller and Guy 
[16], the dynamic stress intensity factor expressed by Eq. (45) can be evaluated. It is apparent, 
however, that ~*(1,p) must be known first before the evaluation of Eq. (45) can be per- 
formed. Figure 2 shows the numerical results of ~*(1,p) as functions of the dimensionless 
Laplace transform wave number C2o/pa for several different values of c~. Here C20 = V~/0 .  
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The influence of  the inhomogeneity parameter c~ on ~* (1, p) can be seen clearly: the magni- 

tude of  ~* (1, p) decrease as c~ increases. 

The influence of  c~ on the dynamic stress intensity factor Kii i( t )  is displayed in Fig. 3, 

where the normalized Kiii(~)/Tox/~d is plotted as a function of  C2ot/a. It is observed that all 
the curves reach a peak and then oscillate about the static values. As c~ or the material in- 

homogeneity - increase, the SIF also decreases. Since the condition c~ = 0 corresponds to a 

homogeneous material whose properties are equal to that of  the F G M  at the crack surface, 

the peak values of  the dynamic stress intensity factor for FGMs are less than that for the 

homogeneous material. This has the strong implication that the crack driving force can be 

reduced by using FGMs to replace homogeneous materials in engineering structures. It is also 
revealed that the time required to reach the peak SIF decreases with increasing c~. 

7 Conclusions 

In this paper, the transient response of  FGMs with a finite crack under antiplane shear impact 

is studied. The local stress field around the crack tip is found to be similar to that for a homo- 

geneous material. This result is very important  in that one can use conventional numerical 

methods of  dynamic fracture mechanics developed for homogeneous solids, such as the 
dynamic fracture finite element method, to analyze the dynamic crack problems in FGMs.  

The computed dynamic stress intensity factors show that the graded material property of  

an F G M  has a considerable influence on the fracture behavior of  FGMs with cracks. It can 

be concluded that under the F G M  property model proposed in this paper, i.e., the shear 

modulus increases symmetrically along the direction perpendicular to the crack surface and 

the mass density keeps constant, the peak value of  the dynamic stress intensity factor 

decreases with the increasing gradient of  FGMs.  Furthermore, the greater the gradient of  an 
FGM,  the faster the dynamic stress intensity factor reaches the peak. 
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