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We formulate a lattice Boltzmann model which simulates Korteweg-de Vries equation by using a method of higher
moments of lattice Boltzmann equation. Using a series of lattice Boltzmann equations in different time scales
and the conservation law in time scale to, we obtain equilibrium distribution function. The numerical examples

show that the method can be used to simulate soliton.

PACS: 47.10. +g

Lattice Boltzmann method!? (LBM) has recently
been introduced as a new computational tool for the
study of fluid dynamics and systems governed by re-,
lated partial differential equations. Unlike traditional
numerical methods which search for macroscopic vari-
ables, LBM is based on the mesoscopic kinetic equa-
tion for the particle distribution function. The macro-
scopic quantities, such as density and velocity, are
then obtained by moment integrations of distribution
function. The kinetic nature of LBM introduces a
number of advantages: (i) linearity of the convection
operator, (ii) the lattice Boltzmann equation is a one-
dimensional (1D) equation for given direction, (iii) the
code is greatly simplified.

In this letter, we propose a method of higher mo-
ments on lattice Boltzmann equation for Korteweg-de
Vries (KdV) equation, and use it to explore, compre-
hend the complex phenomena of the solitons.

Consider a 1D model, we discrete the velocity of
particles into four directions. A lattice with unit spac-
ing is used in which each node has the four nearest
neighbors connected with four links. The distribu-
tion function f, is the probability of finding a par-
ticle at time t and node z, with velocity e, here
a = 0,1,--+,4 (@ = 0 is a rest particle). The par-
ticle velocities e, are 0, ¢, —¢, k¢, and —kc, k=2 is
given four neighbor nodes. The macroscopic quantity
u(x,t) (particles number) is defined by

t)=Zfa(.’r,t), (1)
conservational condition is
>z, t) = wa, ). (2)

The particle distribution function satisfies the lat-
tice Boltzmann equations:!+2
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where f39(x,t) is the equilibrium distribution func-
tion at time ¢ and node z with velocity e, and 7 is
the single relaxation time factor.

Using € as the small lattice unit in physical unit,
can play the role of the Knudsen number,” the lattice
Boltzmann Eq. (3) in physical unit is

Jalo+ eart ) = ful@t) =~ (fa— F5). (4
We apply Taylor expansion and Chapman-Enskog
expansion® to Eq.(4), retaining terms up to O(e®),
under the assumption that mean free path is of the
same order of €. To discuss changes in different time
scales, introduced as tg, - - -, t3, thus, we get a series of

lattice Boltzmann equations in different time scales:
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Above Egs. (5)—(8) are exact equations in all dimen-
sional model. The coefficients 7 — 1/2, 72 — 7 + 1/6,
and —73 + 372/2 — 77/12 + 1/24 in Egs. (5)—(8) are
needed in the derivation and may be used to give the
feature of macroscopic equations.
The macroscopic equation may be written in the
form:
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where m® = =>. f(o)ea = u2/2, assuming that
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with v = eX(7 — 1/2), p = €*(r? — 7 + 1/6), and
n=e3(—m3+37r%2/2 — 77/12 4 1/24).
We assume

4
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Eq. (11) becomes KdV equation,*® therefore,
du 8 u? 93y

bl T 2l gu _ 3
at T () T = O (13)
The truncation error is
—84 u?
R=0(2) =X () + O(e*),

where A is a dissipation coefficient and the coefficient
v is given as

P == T ), (14)

The test problem is simulated to check the per-
formance of this model on the simulation of KdV
equation* with initial and boundary functions

U + Uty + 02Uy =0, Upg = cos(mz),
w(z +2,t) = u(a, t), (15)

which is simulated by using 5-bit model, lattice
size N=50, ¢=1.0, { =1, §=0.022, Az=0.04,
At=0.04, and A=0.0. The soliton reappears, see
Fig. (1).

T=2.2

Fig.1. Numerical results of the KdV equation. Lat-
tice size: N=>50. Parameters: c=1.0; £ = 1.0; § =0.022;
Az =0.04; At=0.04; A=0.0. T =nAt, At is time steps.

In 1991, Frisch” pointed out the possibility that the
increase of the requirments of higher moments may be
used to construct lattice gas model for Navier-Stokes
equation.” In this paper, we use Chapman-Enskog
expansion and multi-scale technique on distribution

function to obtain fés) , and KdV equation with higher
order accuracy. It is a useful concept that according to
conservational law in time scale o, the Egs. (5)—(8) of
different time scales are important result in the LBM.
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