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Abstract The space experimental device for testing the Marangoni drop migrations has been dis-
cussed in the present paper. The experiment is one of the spaceship projects of China. In comparison
with similar devices, it has the ability of completing all the scientific experiments by both auto controlling
and telescience methods. It not only can perform drop migration experiments of large Reynolds num-
bers but also has an equi-thick interferential system.
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The Marangoni drop migration, which is the motion when the drop is in the uneven fields of
temperature or concentration, is a classical question of fluid mechanics''? . When the bubbles and
drops are submerged in an immiscible liquid, it will produce thermocapillary or concencapillary
migrations driven by variations of interfacial tension if there are uneven fields of temperature or
concentration on their surface. On the ground, the effect of capillary tension is coupled with the
buoyancy, which makes it difficult to research the capillary process. In microgravity environ-
ments, however, the buoyancy can be neglected and the Marangoni migrations driven by varia-
tions of surface tension turns to be the dominating factors. The microgravity experiments are the
best chance to study the process. Only the Marangoni migration driven by temperature gradient is
discussed in the present paper.

The Marangoni drop migration is important in both theory and applications. During the pro-
cess of producing alloy, many droplets will occur inside the continued liquid in some temperature
ranges. When the temperature field is not uniform, the Marangoni migrations will occur due to
the gradient of the surface tension. In welding and producing materials in space, the bubbles sus-
pending in the melting liquid can be driven out by controlling the temperature. Results of those
experiments will help improve the producing process both in space and on the ground.

The model analytically dealing with the linear perturbation cases of small Reynolds numbers
(Re << 1) and small Marangoni numbers ( Ma << 1) is named YGB theory by Young et al. (21,
The influence of inertia term and heat convection cannot be omitted in the cases of large Reynolds
number and large Marangoni numbers.

Many experiments have been performed on the ground and the results showed the coupled

[3—s5]

migration effects of thermocapillary tension and buoyancy . The pure thermocapillary migra-

tion process can be researched only in sustaining microgravity environments .
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The bubbles and drops migration experiments were carried out aboard the IML-2 mission of
the Space Shuttle!®? . The experiments were performed in an apparatus named bubble drop particle
unit (BDPU) which was provided by ESA. The apparatus consisted of the systems of power, op-
tical diagnostics, illumination and imaging. The optical diagnostics system included a video cam-
era, a motion picture camera and a point diffraction interferometer (PDI). The PDI can be used
only in a small temperature range because of the influence of the gradient of the temperature-re-
fractive index. In the core of the BDPU were two rectangular test cells with 60 x 45 x 45mm® in
the interior. In the long dimension, the cell was heated by Peltier elements through the aluminum
surfaces; the other four walls were made of fused silica coated with indium tin oxide to minimize
heat loss by radiation, 10 thermistors were mounted on the interior walls for temperature measure-
ment. The injection needle of diameter 1.5 mm was covered with a small valve. Soon after the
drops were formed at the tip of the needle, the injector was withdrawn rapidly to its original posi-
tion to detach the drop. Liquid drops did not detach from the tip of the needle but were separated
from the liquid column, so the first case failed. The continuous liquid was 50 cst silicone oil and
drop liquid was Fluorinert FC-75. The diameters of drops varied from 2.0 to 14.4 mm, and those
of bubbles ranged from 1.2 to 14.8 mm and the temperature gradient was 1.0 K/mm. So the
Reynolds number Re > 1. The results showed that the migration velocity of experiments was lower
than theoretical predictions, and it was a function of drop size and the applied temperature gradi-
ents, V., =f(R,IVT.1).

In 1996, the drop migration experiments were performed aboard the LMS mission of the
Space Shuttle of NASA!" . Air and Fluorinert FC-75 were used for the bubble and drop phases,
respectively, 10cst silicon oil was employed for the continuous phase. The experimental apparatus
was also the BDPU. The Reynolds numbers of this experiment were larger than that of IML-2 mis-
sion due to the higher temperature difference and lower viscosity of the continuous liquid. Results
were found to be generally consistent with that of IML-2 but still lower than the YGB model.

The BDPU of ESA was the main apparatus for international drop migration experiments. The
experiments were operated by astronauts at space lab in the space shuttle. An unmanned space
experimental device is discussed in the present paper. To obtain more information, in the device
an optical interferential system is installed to acquire information of both the background tempera-
ture field and the flow field.

1 General designs of the experimental device

The device was designed for space experiments on large Reynolds numbers. Of course, it
also applied to small Reynolds numbers. To study the nonlinear cases, the influence of inertia
term and heat convection should be included. There are two important dimensionless parameters .

VoR
Interfacial tension Reynolds numbers Re = 5% , (1)
VoR
Marangoni numbers Ma = /: . (2)
o o ’TR | VTw | . .
Here the reference velocity is defined as Vy = — ———————— R is the radius of the drop,

Hi
o'r, the rate of change in interfacial tension with temperature, VT , the temperature gradient
imposed on the continuous phase fluid, and v;, g;, «;, the kinematics viscosity, dynamic vis-
cosity and thermal diffusivity. The subscripts i = 1,2 stand for drop and continuous phase respec-
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tively. By formula (1), the large Reynolds numbers imply that the influence of the inertia is rela-
tively strong, thus requiring that the drop sizes should be larger, the temperature difference high-
er and viscosity lower.

The main intention of the experiments is to study the thermocapillary migrations of single
drop with different sizes and different temperature gradients. The chief task is to observe the track
of the migrations and measure the migrations velocity. The 5 cst silicon oil and FC-75 are the
continuous and drop liquids respectively. We selected the 5 cst silicon oil to obtain larger migra-
tions velocity for its lower viscosity. Due to the space limitation, we selected the drop sizes as R
=2—10 mm, the temperature difference as |V 7T, | =1—1.5 K/mm. We can obtain larger
Reynolds numbers for the higher temperature difference and lower liquid viscosity in the space ex-
periments than IML-2 .

The duration of the space experiments is about 90 min, 60 min for establishing the tempera-
ture field and 30 min for performing the experiments. The former experiments showed that the
time it took to set up steady temperature field was directly proportional to the square of the height
of the test cell, so the height of the test cell was selected as 42 mm. According to the results of
numerical simulation, the trajectory of drop migrations in large Reynolds numbers would be oscil-
lated. The optical interferential system is to observe the fine structure in its wake.

Different from the international one-off apparatus in rocket, our device can be repeatedly
used and inject drops for several times; the BDPU of ESA need astronaut, while ours is un-
manned. The experiments can be auto controlled by the embedded program. At the same time, it
has the function of telescience, the experts on ground can control and intervene the space experi-
ments through telecommands in real time. The equi-thick interference system is so steady that it
can endure the space vibration environments. The injection system has a dual-sleeve structure
and had been successfully used by drop shaft. It is also simple and reliable compared with BDPU
for decreasing mechanical motions. In addition, the device is universal in the functions of tem-
perature field establishment, temperature measurement, optical diagnostics and real time image
recording . One can use the device to perform different space experiments of fluid physics research
by selecting different experimental objects.

The device is sketched in fig. 1. It consists of test cell, injecting system, optical diagnostic
system, image system and electrical-control system. The test cell is the core of the device, and it
is the site for drop migration. The injecting system is responsible for injecting different size drops
to the test cell according to the time sequent demands. The optical diagnostic system can observe
the background temperature field, fluid flow field and the interference field. The image and
recording system collects and records the flow field and interference images on two VTRs in real
time, respectively. The electrical control system has the function of carrying out the experiments
according to the program sequence, storing the scientific data and communicating with ground sta-
tion.

2 Optic-mechanical system

2.1 Test cell

The four 8 mm-thick walls of the rectangular test cell are sticked together by glue, and the
interior is 40 x 30 x 42 mm®. The cell is bounded by aluminum boards in the height dimension,
and an electrothermal film is mounted on the top surface to establish the temperature field. There
are six thermocouples to measure the temperature in the test cell, two on top and bottom surfaces,
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Fig. 1. Sketch of experimental device.

and four on one not-passing-light side wall with the internal 8 mm. During the space experi-
ments, the temperature data can be downlinked to the application center on ground for display
and storage. The experimenter can judge the temperature difference in the test cell according to
the temperature curves.

The test cell is the key component of the whole experimental device. It was not only the site
for drop migration but also the part of interferential system. In order to improve the stability, the
equi-thick interferometer without maladjustment is composed of the front and rear surfaces of the

test cell.

2.2 Optical diagnostic system

The space experiments require that the optical system should have the following essential
functions.

(i) Showing the temperature field before injecting drops.

(ii) Continuously collecting and recording the tracks of the drop migrations for migration ve-
locity measurement .

(iii) Continuously collecting and recording the interferential patterns of the drop migrations
wakes from which the fluid fine structures can be obtained.

Hence the optical system consists of two parts: drop track camera system and interferential
system. The CCD is the image receiver of the drop track camera system. Four LEDs are used for
illumination from the backside, the field of vision is 56 mm x 40 mm, the object resolving power
is 0.1 mm and the object depth of field is +2 mm. The cross section of the test cell is 40 mm x
30 mm and the drop diameters are varied from 2 to 10 mm, the system can clearly image and
track the drops in the whole angular view. In order to improve the efficiency of the device and ob-
tain more related information in an experiment, the track system is required to work with the in-
terferential system independently and simultaneously. The optical axis of the track system is de-
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flexed 5°C from the other system to prevent the laser beam from producing a bright facula at the
image plane center of the track system.

The interferential system detects the change of the interferential stripes produced by drop mi-
grations. The illumination source is a laser (A = 650 nm), and the image receiver is a CCD.
Due to the stability request of space experiments, it is designed as an interferometer without mal-
adjustment. The equi-thick interferential field is made up of two beams reflecting from the front
and the rear surfaces of the test cell. The beam reflecting from the rear surface passes through the
liquid twice, so it has the information of refractive index distribution related to the temperature
field of the liquid. It can indirectly measure the variations of the temperature field of the experi-
mental fluid through the change of the interferential stripes, and thus can measure the wake’s
fine structures.

Because the refractive index of the experi- LED
mental liquid will vary greatly with temperature ?{’ I Spectrolens
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variation, (that is, the coefficient of the tem-  Reflector '
perature refractive index is large), good stripes % S/ I N % --d
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tem is in fig. 2.

Fig. 2.  Sketch of optical system

2.3 The injecting system

The injecting system is a program-controlling device with a double-pipe structure. It consists
of generator, drop and matrix liquid syringes, step-motors and their drivers. The generator is
based on a double-pipe structure, consisting of two co-axial steel pipes. The inner and outer
pipes are connected with two syringes via flexible pipes and tie-ins respectively. There is a gap
between the two pipes. FC-725 is painted as the coating on the outer wall of the inner pipe and
on the inner wall of the outer pipe in order to decrease the wetting between the drop liquid and the
pipe wall so that the drops could be detached from the tip of the pipe easily. The generator is
connected with two syringes that are full of drop liquid FC-75 and matrix liquid 5 cst silicon oil
respectively . The system is able to automatically inject drops controlled by a computer servo sys-
tem.

During the drop injecting process, the drop liquid is fed through the inner pipe to form a
drop at the outlet of the inner pipe first, and then the matrix liquid is supplied from the gap be-
tween the inner and outer pipes to release the drop from the tip of the inner pipe and make it sus-
pend in the matrix. The drop size can be controlled as required. The diameter of the inner pipe
is very small (0.25 mm for the inner diameter and 0.5 for the outer diameter). The injecting
system is sketched in fig. 3.
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way, the extra liquid can be stored in this flexi-
ble vessel with little pressure increase.

3 Electrical-controlling, image collecting, image recording system and telescience

3.1 Electrical-controlling system

The temperature gradient is established by heating electrothermal film, the system controls
two step-motors, a laser, two VIRs, four LEDs and the process of injecting drops. During the
space experiments, when the device is let to pass through the observation regions, the electrical-
controlling system downlinks the scientific telemetry datum and two channels’ alternated images to
the ground. At the same time, it receives the telecommands and memory load commands that are
the information of changing parameters for new experiments .

3.2 Image collecting and image recording system

Two CCD are used for collecting images with resolving power of 512 x 512 x 8 bits, and two
VTRs are used for recording drop migration tracks and interferential patterns, respectively. Dur-
ing the space experiments, two alternant images are transmitted to two VTRs respectively and
downlinked to ground at the same time. Processing the images datum in VTR tapes, we can de-
termine the migrations velocity and the fine structures of the drop wakes.

3.3 Telescience

The space experimental device has the ability of telescience, it can efficiently improve the
quality of the experiments without astronauts. There are 15 items of telemetries, 5 items of
telecommands, 7 items of time-lapse telecommands, 64 KB memory load commands, 4 items of
temperature curves and 2 channels of images. During the space experiments, the experimenters
can monitor the status of the components, temperature difference and the process of the experi-
ment through the downlinked information of telemetry, temperature curves and images. The ex-
perts on ground can make immediate or time-lapse judgments from the downloaded information by
comparing it to the ground experimental models and then change the process of space experiments
at ground lab. The telecommands and time-lapse telecommands can implement teleoperations in
real-time and lapse-time meanings respectively. The memory load commands are the most flexible
method to change the experimental parameters including temperature difference, drop size, quan-
tity of injecting liquid, recording time of VTR, duration of the experiment and so on. The above
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telescience methods on ground are complementary to each other.

There are three modes in the space experimental workflow. The first one is default mode. In
this mode, the experimental process is auto controlled by embedded program without ground inter-
vening, and thus, the mode ensured the completion of experiments even if the communications
between the space and ground are interrupted. The second one is memory-loading mode. The de-
vice is controlled by the memory load commands, and it can flexibly change the experimental pa-
rameters and scenarios in this case. The third is commanding mode. It can finish the experiments
according to the ground instructions if the program is in trouble. The three modes are complemen-
tary to each other. They not only enhance the reliability but also improve the experimental effi-
ciency by telescience methods. Furthermore they make the best of the valuable microgravity time .
The device is the next one for space fluid experiments with telescience, following the fluid physi-
cal device aboard the SJ-5 satellite in China'®! . Obviously, it can enrich our experience in space
fluid physical telescience experiments .

4 Functional tests of the device and primary results of ground-based experiments

We selected Fluorinert FC-75 and 5 cst silicon oil as the drop and matrix liquid, respective-
ly. However, the ground-based experiments ;
cannot be performed because the density of drop
liquid is much higher than the matrix liquid and
then the migrations driven by the interfacial ten-
sion are greatly covered by the buoyancy driven
by gravity on ground. The 5 c¢st silicon oil and
vegetable oil are selected as the drop and matrix
phase liquid to replace the medium for the
space experiment. Functional tests of the device
and primary ground-based experiments had been
carried out and certain results are shown in the
following figures.

Fig. 4 (a) shows that the experiment was
started and the laser, LED, CCD and step mo-
tors had been activated. The temperature curves
are flatter and the four curves in the test cell are
gradually separated from each other, implying
that the temperature field have been set up and
it is time to inject drops. In fig.4 (b), the flu-
id flow image shows that a drop has been inject-
ed. There are 4 thermocouples on the wall of
the test cell and they are also simple objects for
reference in measuring velocity .

In fig. 5, the two interferential patterns
imply the background temperature field in the
test cell. The flatness and spacing density of the

®

Fig. 4. Status tests of the device and flow field.

interferential stripes show an even temperature field and the linear degree of the temperature gra-
dient.
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Fig. 6 shows the change of the interferential strips in the test cell when the drop is migrating
to the topside. There is a trail after the migration, for there is a little solution between the drop
and matrix liquid and their refractive indexes are not equal and the temperature of drop is different
from that of the matrix liquid. The obvious changes of the interferential strips in the tail of the
drop indicate the presence of the flow in fig. 6 (a); and the changes of the interferential strips
surrounding the trail indicate the action of the interfacial tension in fig. 6 (b).

Fig. 5. Interferential pattern of the establishing process of the Fig. 6. Interferential pattern when the drop is migrating to up-
temperature field. side.

S5 Discussion

Numerical simulations had been carried out as the pre-study of the space experiments. Two-
dimensional and unsteady model of drop Marangoni migrations were calculated for the case of
large Reynolds numbers and the accelerating drop migrations was determined ' . In numerical
simulation of asymmetric model, in the case of large Reynolds numbers, the drop migration tra-

jectory toward warmer region could be a non-straight line, and the migration velocity could be
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lower than those in YGB model. The oscillated drop trajectory could be due to the vortex in the

wake of the drop tail !

. An interferential system for observing the wake and vortex is designed.

The neutral suspending method could be used for researching drop Marangoni migration on
the ground. In the method, the density of drop and matrix liquid were matched equal to decrease
the influence of gravity. The 5 cst silicon oil and vegetable oil were used as the drop and matrix
liquid. Their densities are 0.934 g/cm’ at 0°C , the gradients of the interfacial tension with tem-
perature variation — 0.0055 x 10 >N/(cmK), drop diameters 0.6—6 mm, the temperature gra-
dients 5.85 and 7.5 K/mm, respectively and the experimental Reynolds numbers are 0.09—
14.6. The results implied that the drop migration velocity was lower than those in YGB model’®’ .
Although the neutral suspending methods was used, their density were not equal in the whole
temperature range because the thermal expanding coefficients of drop and matrix liquid were not
the same. The influence of gravity could not be neglected. Only in microgravity environment
could pure thermocapillary drop migrations be obtainable .

According to the results of cerlain space experiments and theoretical calculations, it takes
about several seconds for drops of diameter of millimeter magnitude to obtain steady velocity. So
this kind of experiments could be carried out in some short-time microgravity facility such as drop
shaft. As the pre-research of space experiments, some experiments were carried out using drop
shaft with 4.5 s microgravity times in Japan in 1996. The medium was the same as that in the
ground-based experiment, the temperature gradient was 3.2 K/mm, and the drops diameters
were 5.2—7.5 mm, belonging to the intermediate Reynolds numbers (0.88—2.18). The re-
sults implied that drop migration velocity was dependent on the drop size and the temperature gra-
dient. The experimental velocity was obviously lower than the theoretical one, being in agreement
with the results of the ground-based experimentsm].

The universal space experimental device for fluid mechanics discussed in the present paper
was developed for the scientific project of drop Marangoni migrations for large Reynolds numbers.
Its general design as well as its optical and injecting systems has distinct features. The device is
especially applied to the unmanned space experiments. It can improve the reliability and decrease
the demands and outlay of the experiments by telescience methods. The tests of the device proved
that it can meet the requirements of the space experiments.
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