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Abstract Microcantilever-based biosensors have been
found increasing applications in physical, chemical, and
biological fields in recent years. When biosensors are used
in those fields, surface stress and mass variations due to
bio-molecular binding can cause the microcantilever de-
form or the shift of frequency. These simple biosensors
allow biologists to study surface biochemistry on a micro
or nano scale and offer new opportunities in developing
microscopic biomedical analysis with unique characteris-
tics. To compare and illustrate the influence of the surface
stress on the frequency and avoid unnecessary and com-
plicated numerical solution of the resonance frequency,
some dimensionless numbers are derived in this paper by
making governing equations dimensionless. Meanwhile, in
order to analyze the influence of the general surface stress
on the frequency, a new model is put forward, and the
frequency of the microcantilever is calculated by using the
subspace iteration method and the Rayleigh method. The
sensitivity of microcantilever is also discussed.

1
Introduction
In cantilever-based sensing, micromechanical cantilever-
based sensors are devices based on the measured changes
of physical quantities such as resonance frequency,
amplitude, deflection and quality factor (Q), whose
applications have been found wildly pervading into
physical, chemical, and biological field in recent years [1–
5]. Peculiarly, biological applications, due to advances in
high sensitivity, increased reliability, greatly reduced size
and low costs, make increasing progress. Several groups
have been investigating cantilever-based biological sen-
sors [6–10]. When the micromechanical cantilever is used
as the detection platform for the chemical or biological
properties, one of the microscale effects, surface stress,

plays an important role in sensing and must be consid-
ered correspondingly. Some experimental results have
also demonstrated its significant influence on the physical
properties of the cantilever [11, 12]. Therefore, theoretical
understanding and analysis on the origin and behavior of
the surface stress will be mainly critical in determining
resonance frequency, amplitude, deflection as well as Q
factor, and will also be useful in optimizing and
improving the cantilever structure. Of all the above-
mentioned parameters, the resonance frequency is most
important.

In biological sensing, the available beam is V-shaped or
rectangular micromechanical silicon nitride cantilever
generally coated with other metal materials, such as a piece
of gold film for the adsorption of the biomolecular on the
microcantilever surfaces or a piece of chrome film for
good adhesion between the first film and the substrate. To
illustrate the problem generally, the rectangle cantilever is
considered in this paper and Fig. 1 shows the schematic
view of microcantilever as analyzed in [11]. In experiment,
when the target moleculars are immobilized on the sub-
strate or react with special film plated on the cantilever,
surface stress is caused, defined as force per unit length,
which affects the physical properties, mainly the frequency
of the microcantilever.

2
Existing models

2.1
Model of the constant axial force acting at the free end
of mirocantilever
Assuming the symmetry for the x� y plane of the pris-
matic beam, the general equation for transverse free
vibrations of a beam is

EI
o4w

ox4
þ qA

o2w

ot2
¼ 0 ; ð1Þ

where the EI is the bending rigidity of beam, w is the
deflection, x is the abscissa, t is time, q and A are the mass
density and the area of beam cross-section, respectively.
Here, the bending rigidity, EI, is assumed constant along
the beam. For the micromechanical cantilever-based bio-
sensors, the surface stress is caused by biomolecular
binding on the substrate shown in Fig. 2. The surface
stress can be expressed by the equivalent axial force N and
equivalent moment M acting at the free end of the canti-
lever which are given by [13]
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N ¼ sl

M ¼ slh=2 ;
ð2Þ

where s is the surface stress defined as force per unit
length, and l, h are the length, the thickness of the
cantilever, respectively. Considering the axial force the
governing equation for free transverse vibration can be
written as [13]

EI
o4w

ox4
� N

o2w

ox2
þ qA

o2w

ot2
¼ 0 : ð3Þ

And the resonant frequency of this model is complex and
given by Eq. (19) in [13]. This model adopts the
assumption that the axial force due to the surface stress
should be constant and act at the free end of the cantilever.

2.2
Model of a taut string
The model of a taut string approximates the structure by
substituting the spring constant caused by the surface
stress for the effective rigidity of the cantilever as shown in
Fig. 3. This model is simple to calculate the frequency
because it neglects the bending rigidity of the cantilever.
For this model, the governing equation for a taut string
can be written as [14]

N
o2w

ox2
þ qA

o2w

ot2
¼ 0 : ð4Þ

In [14] and [15], the resonant frequency of the cantilever is
given by

f ¼ 1

4l

ffiffiffiffiffiffiffi

N

nm

r

¼ 1

4

ffiffiffiffiffiffiffiffiffi

s

nmb

r

; ð5Þ

where N is the axial force equivalent to the surface stress

N ¼
Z

L

0

s dl ¼ sl ; ð6Þ

m, mb and n are the mass of unit length, mass of
cantilever and the effective coefficient for different
shapes of cantilevers, respectively. This model adopts
the following assumptions to simplify the calculation of
the frequency:

(i) the surface stress is sufficiently great and the bending
rigidity is negligible; and

(ii) the surface stress must be positive to satisfy the tensile
force.

In general, the whole system can also be treated as an
effective mass connected in parallel to two springs with K
contributed by bulk property and Ks contributed by the
surface stress. This case is same to the model that the
constant force acting at the free end of the mirocantilever,
while its frequency is expressed by the simple form com-
bined with the taut string model. Yet, it cannot deal with
the general surface stress because the aforementioned
models adopt the assumption that the axial force due to
the surface stress should be constant along the cantilever.

3
Governing dimensionless numbers
Because the influence of the surface stress on the fre-
quency can not be revealed directly from the expression
of frequency of the aforementioned models, the dimen-
sional analysis on the frequency of the microcantilever
subjected to surface stress is necessary. By making the
governing equation dimensionless, some dimensionless
numbers with evident physical significance can be
obtained. Introducing the dimensionless transformation
as follows

X ¼ x

l
; W ¼ w

h
; T ¼ xt ; ð7Þ

Fig. 1. Schematic of a microcantilever with biomolecule adsorp-
tion as analyzed in [11]

Fig. 2. Schematic of a microcantilever with surface stress action
and its equivalent axial force N and equivalent moment M

Fig. 3. Schematic of the vibration of a taut string
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then onw=oxn and onw=otn are given as follows

onw

oxn
¼ h

ln

onW

oXn

onw

otn
¼ hxn onW

oTn

; n ¼ 1; 2; 3 . . . . . .ð Þ : ð8Þ

Substituting Eqs. (7) and (8) into Eq. (3), the governing
equation can be expressed in the dimensionless form

o4W

oX4
�P1

o2W

oX2
þP2

o2W

oT2
¼ 0 ; ð9Þ

where two new dimensionless numbers are defined as
follows

P1 ¼
sl3

EI
; P2 ¼

qAl4x2

EI
: ð10Þ

The first dimensionless number, P1, denotes the ratio of
the surface force s to the elastic bending force EI=l3 per
unit length, and the second one, P2, denotes the ratio of
inertial force qAlx2 to the elastic bending force EI=l3 per
unit length. The governing equation of microcantilever
may be greatly affected by the dimensionless number, P1,
because the microcantilever generally has the large slen-
derness ratio or is subjected to the great surface stress.

If the magnitude of the surface stress is approximately the
same to that of the bending force, i.e., P1 � 1, the equation
is given by Eq. (9). For harmonic vibration, one has

W ¼ Y sinðT þ uÞ ; ð11Þ
where u phase angle after dimensionless transformation.
Substituting Eq. (11) into Eq. (9), it yields

d4Y

dX4
�P1

d2Y

dX2
�P2Y ¼ 0 : ð12Þ

The solution of Eq. (12) can be expressed as

Y ¼ A cos h PX þ B sinh PX þ C cos QX þ D sin QX ;

ð13Þ
where

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
1 þ 4P2

q

þP1

2

v

u

u

t

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
1 þ 4P2

q

�P1

2

v

u

u

t

: ð14Þ

Taking the following boundary conditions into account

YjX¼0¼ 0

dY

dX

�

�

�

�

X¼0

¼ 0

d3Y

dX3
�P1

dY

dX

�

�

�

�

X¼1

¼ 0

d2Y

dX2

�

�

�

�

X¼1

¼ 0

; ð15Þ

the first order frequency equation can be obtained as fol-
lows

2P2Q2 þ ðP4 þ Q4Þ cosh P cos Q

þ ðP3Q� PQ3Þ sinh P sin Q ¼ 0
: ð16Þ

This solution of frequency is given in [13], which is
expressed by the dimensionless numbers in this paper.

If the magnitude of the surface stress is sufficiently
small, i.e., P1 << 1, the second term, P1

o2W
oX2 , in Eq. (9)

can be negligible and the equation is expressed as follows

o4W

oX4
þP2

o2W

oT2
¼ 0 : ð17Þ

This equation denotes transverse vibration of the beam.
The first order frequency is given by

f ¼ x1

2p
¼ 3:516

2p

ffiffiffiffiffiffiffiffiffi

EI

qAl4

s

: ð18Þ

In this case, the dimensionless number, P2, can approxi-
mately be calculated as 3:5162 when substituting the Eq.
(18) into the expression of the dimensionless number, P2,
in Eq. (10) and considering the first order frequency.

If the magnitude of the surface stress is sufficiently
great, i.e., P1 >> 1, the first term, o4W=oX4, in Eq. (9) can
be negligible and the equation will be expressed as

P1
o2W

oX2
þP2

o2W

oT2
¼ 0 : ð19Þ

This is the governing equation of a taut string expressed
by the dimensionless form, as referred in [15]. In [15], the
equation of a taut string substitutes that of microcantilever
subjected to the surface stress because of sufficiently great
surface stress. So the fundamental natural frequency can
be calculated as

f ¼ x1

2p
¼ 1

4

ffiffiffiffiffiffiffiffiffi

s

nmb

r

: ð20Þ

In this case, the ratio of the dimensionless number P2 to
P1 can be calculated as P2=P1 ¼ p2=4, when the first order
frequency is taken into account. By using Eq. (20), the
calculation of the first order frequency of a cantilever is
simplified. However, it requires that the general surface
stress should be absolutely positive, and that the axial force
equivalent to the surface stresses be sufficiently great. If the
general surface stress is negative or is not sufficiently great,
Eqs. (19) and (20) can not be applied any more.

4
A new model for general surface stress and the analysis
compared with different models
As we discussed in the previous section, the two afore-
mentioned modes are expected to abide by some
assumptions, such as tensile surface stress or equivalent
force acting at the free end of cantilever. Both models deal
with the problem of constant axial force distributed along
the cantilever. In reality, since the surface stress coverage
varies as shown in Fig. 4, which leads that the axial forces
due to surface stress vary along the cantilever, and that the
solutions of the frequency of the previous models are not
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exact. So the aforementioned models cannot deal with the
influence of the general surface stress on frequency.

In this case, we put forward a new mode, in which the
axial forces due to the surface stress vary along the can-
tilever, to obtain the analysis of the general surface stress
on the frequency.

If the varied axial forces are distributed along the
cantilever, the governing equation can be expressed as [16]

EI
o4w

ox4
� o

ox
NðxÞ

o2w

ox2

� �

þ qA
o2w

ot2
¼ 0 ; ð21Þ

where the axial force, NðxÞ varies along the cantilever and is
given as follows

NðxÞ ¼ sl � f xð Þ

f xð Þ ¼
x2

l �
x1

l 0 < x < x1

x2

l � x
l x1 < x < x2

�

; ð22Þ

Substituting Eqs. (7), (8), (11), (22) into Eq. (21), the
equation can be expressed in the dimensionless form

d4Y

dX4
�P1 � f Xð Þ �

d2Y

dX2
�P1

df Xð Þ
dX

dY

dX
�P2Y ¼ 0 ;

ð23Þ
whose boundary conditions are taken as revised Eq. (15)
in which the term, P1dY=dX, is deleted. This problem
can be solved by modern numerical techniques, such as
the subspace iteration technique and the shooting tech-
niques by means of Runge-Kutta integration or Newton
method. We choose the subspace iteration technique to
solve the first order frequency of this model. Figure 5

shows its result versus dimensionless number, P1 when
the surface stress covers from the beam root to the beam
midpoint (x1=l ¼ 0 and x2=l ¼ 0:5) and from the mid-
point to the beam free-end (x1=l ¼ 0:5 and x2=l ¼ 1),
respectively.

Although the numerical solution of first order fre-
quency of this model is given, the influence of the surface
stress on the frequency can not be obtained directly. In
addition, the biologists expect to get a simple and exact
formulation about the frequency of cantilever subjected to
the surface stress. So the approximate solution of the new
model is necessary, and can be given by using the Rayleigh
method.

The deflection curve is given by [17]

w ¼ mg

2EI

1

2
l2x2 � 1

3
lx3 þ 1

12
x4

� �

; ð24Þ

where m is the density of a microcantilever per unit length,
m ¼ qA. If the axial forces vary along the cantilever, the
potential energy of bending in the case can be expressed as

V ¼ EI

2

Z

l

0

d2w

dx2

� �2

dxþ 1

2

Z

x1

0

dw

dx

� �2

x2 � x1ð Þs dx

þ 1

2

Z

x2

x1

dw

dx

� �2

x2 � xð Þs dx

¼ m2g2l5

40EI
1þ 5sl3

EI

1

12

x

l

� �4
� 1

10

x

l

� �5
þ 1

18

x

l

� �6
��

� 1

63

x

l

� �7
þ 1

504

x

l

� �8
	
�

�

�

�

x2

x1




: ð25Þ

If the deflection during vibration is given by w cos xt, the
maximum kinetic energy of vibration will be

T ¼ mx2

2

Z

l

0

ðwÞ2dx ¼ 13

6480

m3g2x2l9

ðEIÞ2
: ð26Þ

Putting Eq. (25) equal to Eq. (26), the following expression
of the first order frequency is obtained

f ¼ x1

2p
¼ 9

2p

ffiffiffiffiffi

2

13

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b
� x1

l
;
x2

l

�

�P1

r

�
ffiffiffiffiffiffiffi

EI

ml4

r

;

ð27Þ
where

b ¼ 5
1

12

x

l

� �4
� 1

10

x

l

� �5
þ 1

18

x

l

� �6
� 1

63

x

l

� �7
�

þ 1

504

x

l

� �8
	
�

�

�

�

x2

x1

:

The changes of the first order frequency due to the dif-
ferent positions and the length of the surface stress cov-
erage can be investigated through the parameters
bðx1=l; x2=lÞ. In general, the frequency of cantilever can be
expressed as [17]

Fig. 4. Schematic of a microcantilever with fractional surface
stresses coverage

Fig. 5. The frequency when the different coverage area of surface
stress
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f ¼ xn

2p
¼ knlð Þ2

2p

ffiffiffiffiffiffiffiffiffi

EI

qAl4

s

; ð28Þ

where the dimensionless number, knlð Þ2, determines the
frequency of cantilever and is dependent on the boundary
conditions and the applied forces such as the surface
stress. When the first order frequency taken into consid-
ering, substituting Eq. (27) into Eq. (28), the dimensionless
number k1lð Þ2 can be expressed as

k1lð Þ2 ¼ 9

ffiffiffiffiffi

2

13

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b
x1

l
;
x2

l

� �

�P1

r

: ð29Þ

Figure 6 shows the variation of b with the changes of x1=l
when x2=l ¼ 1. From this figure, it is clear that the position
and the area of the surface stress coverage greatly influ-
ence on the frequency. If the rectangle cantilever is
considered and the surface stress is linearly distributed
along the cantilever (x1=l ¼ 0 and x2=l ¼ 1), the first order
frequency can be given by

k1lð Þ2 ¼ 9

ffiffiffiffiffi

2

13

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

8
�P1

r

: ð30Þ

This is the simplified first order frequency of the micro-
cantilever subjected to the axial forces linearly distributed
along the cantilever using the dimensionless number.

It must be noted that an elastic beam represents a
system with an infinitely large number of degrees of
freedom. It can perform vibrations of various types. The
choosing of a definite shape for the deflection curve in
using Rayleigh’s method is equivalent to introducing some

additional constraints which reduce the system to one
having one degree of freedom. Such additional constraints
can only increase the rigidity of the system, i.e., increase
the frequency of vibration and the frequency has the stable
result near the shape of vibration, whose result differs by
less than 1.5% from the exact numerical solution [17].
Figure 7 shows the relative error of frequency obtained by
the numerical solution and Rayleigh’s method. It is seen
that the error of the approximate solution for this case is
about 0.5 percent with increasing dimensionless number,
P1. So the approximate solution by using Rayleigh’s
method can be used to determine the frequency.

In order to compare the frequency of this model with
those of the existent models, we should rewrite the for-
mulations of aforementioned models as dimensionless
number, k1lð Þ2 versus dimensionless number, P1. For the
model of the constant force acting at the free end of
mirocantilever, substituting Eq. (28) into Eq. (16), Eq. (16)
can be expressed as the function of the dimensionless
number, P1, and k1lð Þ2

2P2Q2 þ ðP4 þ Q4Þ cosh P cos Q

þ ðP3Q� PQ3Þ sinh P sin Q ¼ 0
; ð31Þ

where P and Q can be expressed as follow

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
1 þ 4 ðk1lÞ2

� �2
q

þP1

2

v

u

u

t

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
1 þ 4 ðk1lÞ2

� �2
q

�P1

2

v

u

u

t

: ð32Þ

We can obtain the variation of k1lð Þ2 with changes of
magnitude of the dimensionless number, P1. For the
model of taut string, substituting the expression
s ¼ P1 � EI=l3 into Eq. (20) and considering Eq. (28), the
first order frequency of a taut string can be expressed as

k1lð Þ2 ¼ p
2

ffiffiffiffiffiffi

P1

p

: ð33Þ

In Fig. 8, the continuous line denotes the model of con-
stant force acting at the free end of the cantilever. The
dotted line denotes model of a taut string, whose first
order frequency is k1lð Þ2 ¼ p

2

ffiffiffiffiffiffi

P1

p
. The dashed line

denotes the model with axial forces linearly distributed
along the cantilever, whose first order frequency is

k1lð Þ2 ¼ 9
ffiffiffiffi

2
13

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
8 �P1

q

. The horizontal dash-dot line

denotes microcantilever under no surface stress, whose
first order frequency is k1lð Þ2 ¼ 3:516. The vertical dash-
dot line denotes the lower limit of dimensionless number,
P1 ¼ �p2=4, which is calculated by substituting the crit-
ical load Pcr ¼ �sl ¼ p2EI=4l2 into dimensionless number,
P1, of Eq. (10). From Fig. 8, the continuous line and the
horizontal dash-dot line denote the upper limit and lower
limit of the frequencies of the cantilever subjected to the
surface stress, respectively. The first order frequency of the
microcantilever subjected to the axial force linearly dis-
tributed along the cantilever, is between that of a taut
string and a cantilever subjected to the constant axial force

Fig. 6. Variation of b with x1=l when x2=l ¼ 1

Fig. 7. Relative errors of frequencies calculated by the subspace
iteration method and by the Rayleigh method
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at the free end when the magnitude of dimensionless
number, P1, is less than 14. The frequencies of those two
models, the taut string and the microcantilever subjected
to the axial forces linearly distributed along the cantilever,
are equal when the magnitude of dimensionless number,
P1, is approximately 14. When P1 > 14, the frequency of
the microcantilever subjected to the axial forces linearly
distributed along the cantilever increases more slowly than
that of a taut string with increasing P1. The reason is that
the influence of the bending rigidity on the frequency is
more than that of the surface stress when magnitude of
dimensionless number, P1 < 14. And with the increasing
dimensionless number, P1, when P1 > 14, the surface
stress plays more important role in the frequency than the
bending rigidity, so the first order frequency of the new
model is lower than that of a taut string.

In Fig. 9, the continuous line denotes relative error of
the frequency of a taut string and the microcantilever
subjected to axial force linearly distributed along the
cantilever, and the dashed line denotes the relative error of
the frequencies of two models, i.e., the microcantilever
subjected to the constant force at the free end and the
microcantilever subjected to the axial force linearly dis-
tributed along the cantilever. In this figure, when the
magnitude of dimensionless number, P1, is less than 14,
the relative error of the frequencies between the models,
the taut string and the microcantilever with the axial force
linearly distributed along the cantilever, decreases sharply,
and the relative error of the frequencies between the
models, the microcantilever subjected to the constant force

at the free end and the microcantilever with the equivalent
axial force linearly distributed along the cantilever, in-
creases dramatically. From Fig. 9, the relative error of two
curves approaches 25% when P1 approaching infinite. By
analyzing Figs. 8 and 9, it can be compared that the fre-
quencies of those two models, i.e., the taut string and the
cantilever subjected to the constant axial force at the free
end, increase more dramatically than that with equivalent
axial force linearly distributed along the cantilever with
increasing P1. So the influence of the surface stress on the
frequency is different in different models and we cannot
simply model the microcantilever applied by the general
surface stress as the aforementioned models, i.e., the taut
string and the microcantilever subjected to the constant
axial forces at the free end of the cantilever.

5
Sensitivity of cantilever on surface stress of the new mode
In general, the resonant frequency, f , of an oscillating
cantilever can be expressed as

f ¼ 1

2p

ffiffiffiffiffiffi

K

m�

r

; ð34Þ

where K is the effective spring constant and m� is the
effective mass of cantilever. The effective spring constant
can be expressed as K ¼ 3EI=l3, and the effective mass is
related to the mass of the cantilever, mb, through the
relation m� ¼ nmb, where n is a geometric parameter, and
it is 0.24 for a rectangular cross-section. It is clear that
biomolecule adsorption can cause the mass to change as

Fig. 9. Relative errors of frequencies of the
different models versus the dimensionless
number, P1

Fig. 8. Frequency k1lð Þ2 versus the dimensionless
number, P1
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well as the variation in spring constant, but contribution of
from the mass due to adsorption is negligible [15]. When
the microcantilever is subjected to the surface stress due to
the biomolecule adsorption, rewriting the Eq. (27) in the
form of Eq. (34), the frequency of the microcantilever
calculated by the new model can be given as

f ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ Ks

m�

r

; ð35Þ

where Ks is the function of bðx1=l; x2=lÞ and the dimen-
sionless number, P1. If the surface stress coverage is full of
the length of the microcantilever, the Ks can be given by

Ks � 1
8 P1K : ð36Þ

So the change of the resultant surface stress, ds, can be
calculated from

ds ¼ 32
3 p2ðf 2

2 � f 2
1 Þnmb ; ð37Þ

where f1 and f2 are the resonant frequencies before and
after adsorption, respectively. This interpretation of fre-
quency shift can be used to calculate the general surface
stress due to adsorption. If the adsorption characteristic
of the biomolecule is considered, the adsorption amount
of the biomolecule can also be calculated in accordance
with the change of the surface stress.

To illustrate the degree of adsorption, it is necessary to
define the surface-stress sensitivity of a microcantilever as

as ¼ lim
Ds!0

1

f

Df

Ds
¼ 1

f

df

ds
; ð38Þ

in accordance with the mass sensitivity [18, 19], where Ds
and ds are normalized to the active area of the cantilever.
Substituting Eq. (35) into Eq. (38), the sensitivity of the
surface stress, as, is given by

as ¼
3

16 K þ 3
8 s

 � ¼ 1

16 EI
l3 þ 1

8 s
 � : ð39Þ

From the above result, we can conclude that the sensitivity
of the cantilever is inversely proportional to the effective
spring constant when the surface stress is slight. And the
surface-stress sensitivity for this case is determined when
the microcantilever is fabricated. We can design its geo-
metrical shape and adopt different materials to control the
detection sensitivity in various conditions.

6
Conclusions
In conclusion, two issues about the influence of the surface
stress on the first order frequency of cantilever-based
biosensor are considered in this paper. One is to make

dimensionless of the governing equations of the micro-
cantilever subjected to the surface stresses to obtain two
models. Thereby, the influence of the surface stress on the
first order frequency of the different models is analyzed
and compared.

Another issue is to put forward the new model in
which the axial forces are not constant but vary along
the cantilever. Its first order frequency is obtained by
using the subspace iteration method and Rayleigh’s
method. Adopting this model, the influence of the gen-
eral surface stress on the frequency is dealt with. And
this model is more suitable for the actual situation than
other models.

Although the first order frequency of the microcantile-
ver subjected to the general surface stress is obtained by
the subspace iteration method and Rayleigh’s method, the
detection using the frequency in experiment is limited
because the microcantilever is generally immerged into
the liquid and the scale of cantilever is so little that the
viscosity of the liquid and the thermal effects should be
considered in real experiment. All those questions will
be discussed in later paper.
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