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ABSTRACT

An embedded cell model is presented to obtain the effective elastic moduli and the elastic-plastic
stress-strain relations of three-dimensional two-phase particulate composites. Each cell consists of
an ellipsoidal inclusion surrounded by a finite ellipsoidal matrix that embedded in an infinite matrix.
When both matrix and particle are elastic, the effective elastic moduli are derived which is an exact
analytic formula without any simplified approximation that can be expressed in an explicit form.
Further, the elastic-plastic stress-strain relations are obtained for spherical cells and oblate spheroid
cells, in which the matrix is elastic and the particle is elastic-plastic. In addition, the macroscopic
elastic-plastic constitutive relation of particle reinforced composites (PRC) is investigated by a
systematic approach [1] in which the matrix is elastic-plastic and the particle is elastic.

1. INTROUCTION

The recent rapid progress in materials science has led to the production of advanced composites
with superior mechanical properties and gives rise to the intensive study on predicting the behavior
of heterogeneous materials. One of the most basic problems in composite-materials theory is the
prediction of effective elastic properties of composites which is the subject of many investigations.
Equivalent-inclusion principle was presented by Eshelby[2] in 1957. There are several
micromechanics models to estimate the effective moduli of composites[3-8]. The closed-form
interacting solutions for the overall elastic moduli of an isotropic matrix with various multi-phase
and multi-shape isotropic inclusions are derived by Zheng and Du[9].

Qiu and Weng[10] developed an average method to predict the nonlinear constitutive relation of
composite materials based on the modified Mori and Tanaka procedure. An alternative approach
proposed by Duva and Hutchinson[11] is based on the solution of a kernel problem, in which an
isolated inclusion is embedded in an infinite matrix of nonlinear material. Zhu and Zbib[12]
investigated the mechanical properties of composites based on a finite unit cell model accounting
for the interaction of particles in composites with periodic microstructures (e.g. Llorca and
Gonzélez[13]). Each unit cell consists of a rigid inclusion surrounded by a plastically deforming
material.

For brevity, the symbolic notation will be used in the general theory in this paper. Bold-face,
Greek letters denote the 2nd-rank tensors, and ordinary capital letters denote the 4th-rank ones. The

inner product of two tensors is written such that oe = oye;, Le=Lyg,,and LS =L,S,,,,in
terms of the indicial components.
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2. EMBEDDED CELL MODEL AND BASIC FORMULAE ¢’

An ellipsoidal elastic inclusion Q is considered in a /I\
homogeneous infinite elastic body. The traction at
infinity is prescribed to correspond to uniform stresses.
An embedded cell model consists of an ellipsoidal
inclusion Q surrounded by a finite eilipsoid V and is
embedded in an infinite matrix (Fig. 1). The embedded
cell model is different from the classical three-phase and
two-phase model, because the embedded cell is only
concerned in matrix phase and inclusion phase and it is
embedded in an infinite matrix so that the traction and
the displacements of the cell's boundary are determined
by the uniform remote loads. The elasticity tensors of

the matrix and the ellipsoidal inclusion Q are L, and \l/ b,
L,, respectively. (see Fig. 1).

2.1 Effective Elastic Moduli

Fig. 1 The embedded cell model

Suppose that the infinite homogeneous elastic body is subjected to farfield stress o°, with
accompanying strain €°. The strain and stress fields in the matrix naturally differ from o° and €°
due to the presence of the inclusion. Denoting these disturbances by o and & respectively, the
total stress and strain are given by

Gy =0 +0, €om =€ +E (1)
By means of Eshelby's solutions and the equivalent eigenstrain principle [14], the stress and strain
in the inclusion are uniform, given by
foodV=0Q0=0L,(e-¢€")=QL,(S(Q)-De", [qedV = Qe=QS(Q)e’ )
where eigenstrain & can be expressed as follows
& =—[Ly + (L, - Lo) S(]'[L, _Lo]";O =—-Ag’ 3
here A is the concentration factor tensor, A =[L, + (L, ~L,)S(Q)]'[L, ~L,]
and S(Q) is Eshelby's tensor for the ellipsoid Q. The components of the S-tensor for a general
isotropic spheroid are given in Appendix.
In terms of Tanaka-Mori's theorem [14,15], we have

[ 04V =QL,(S (V) -8@)e’, [ edV==0(S (V) -S(Q)¢’ (4)

where S(V) is Eshelby's tensor for the ellipsoid V. Eq. (4) show the volume integrals of the stress
o and the strain € over V-Q are independent of the absolute position of V and € ; they depend
only on the Eshelby's tensors of V and Q; they vanish when V and Q are similar in shape and
have the same orientation.

Then, the average stress and strain of the embedded cell are

E:%j\,cm, AV =Lo[I+ p @—S(V))AL’, ‘;:%]\,smm AV =[1- pS(V)AE®  (5)
where p is the volume fraction of the inclusion, p=Q /V.
The effective elastic moduli of the cell, L, then follow from o=Leg ,as
L =L, {I+pA[1-pS(V)A]™"} (6)
Expression (6) is an exact analytic formula for the effective elastic moduli of the embedded cell
model. In equation (6), S(V) reflects the effect of the shape of the ellipsoid V, and S(Q2) is relative

to the shape of the inclusion Q. So, the explicit expression (6) is simple but quite meaningful.
When the ellipsoid V and the ellipsoidal inclusion Q are similar in shape and have the same
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orientation, substituting S(V) = S(Q) = S into Eq. (6), we find that the effective elastic moduli are
the same as those obtained by Mori-Tanaka method[16].

When the inclusion is spherical, two aspect ratios of the ellipsoid V are considered in order to
investigate the effect of the shape of the cell on the effective elastic moduli. For the spherical V,
S(V)(=S(Q)) is given in A3. Eq. (6) readily provides the effective bulk and shear moduli of the cell
which are the same as those by the Mori-Tanaka method [8] and displayed in Fig. 2. For the rotative
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Fig. 2 Normalized effective shear moduli vs volume fraction

...... Mori-Tanaka method [8]; - - -Generalized self-consistent method [5];
— Spherical inclusion in oblate ellipsoidal matrix

oblate spheroid V, S(V) is given (in Appendix A1) for the aspect ratio o, =b, /b, =1/2, assuming
direction 1 to be the axis of rotation. Substituting S(V) and S(Q) into Eq.(6), the effective moduli
are obtained as showed in Fig. 2, along with the solutions of other micromechanics models. As
shown in these figures, the moduli are close to the solutions from the generalized self-consistent
model[5] and the Mori-Tanaka method[8], which indicates that the effect of the shape of the cell on
the effective elastic moduli is quite small.

2.2. Elastic-Plastic Stress-Strain Relations

The embedded cell model is developed to obtain the elastic-plastic stress-strain relations of two-
phase particulate composites, in which the matrix is elastic and the particle is elastic-plastic. The
macroscopic elastic-plastic constitutive relation of the cell is expressed by © =L.s¢ . The effective
moduli L ; can be obtained based on the formulae in the above section, in which the elastic moduli
of the particle E, and v, are replaced by the secant moduli of the particle E; and vi.

When the effective strain of the particle is given, the effective stress can be obtained as based on
the power-law equation

o, =h(e,)" @)
According to deformation theory of plasticity, the deviatoric stress is
1 2 Ge i
o =[g;}u ®)
The secant moduli of the particle are
s 1o, 20,
T = 3 . (88 +38,)+ (KI - 5;’)5@5“ &)

Then, the elastic moduli of the cell can be expressed by
L.o=L, {I+pA,[I-pS(V)A,]"} (10)

here A, =[L, + (L} — L) S()]'[L} ~L,] .
Since the particle's strain is
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&= {1 ~S@L, + (@ ~Lo)s@] [ -LO]}SO =[1-S©@A,Je° =B,&° 1)
then, the average stress and strain of the cell can be calculated
o=L,[I+ pI-S(V))A,J° =L,[I+ p@-S(V))A,IB,) 'e=Le (12)
e=[I- pS(V)A,le°=C,(B,)'e (13)
where L=L/,[I+ pI-S(V))A,]®B,)" (14)

It is easily seen that the stress and strain relations of the cell can be obtained exactly and in closed
form once the strain of the particle is given.

In this paper, the elastic-plastic relation curves of the composite are calculated for spherical cell
and oblate spheroid cell (the aspect ratio is 0.5). The ellipsoid V is similar to and coaxial with
particle Q and the volume fraction p of the particle is 0.5. Three materials are considered. For the
uniaxial stress state, suppose that direction 1 is the loading axis, according to the deviatoric strain of
the particle (&), =€}, =—¢},/2) and the effective strain ¢, of the particle, we have

€, =€y, (15)
When the effective strain of the particle is given, Lcan be obtained in terms of Eq. (14). Because
the average stresses 62, and o3 of the cell are equal to zero, the average strain (hydrostatic strain)
e, of the particle can be calculated by means of Eqgs. (12) and (15). Then the stress and strain
relations of the cell are obtained which are displayed in Fig. 3. As shown in figures, the effect of the
shapes of the cells on the marcostress and macrostrain relation curves of the cell is little. Although
the particle is power hardening material, the nonlinear properties of the cell are slight because the
matrix is elastic material. The effect of the elastic moduli of the particle on the stress and strain
relations is not significant in uniaxial stress state.
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Fig. 3 The stress-strain curves in uniaxial siress state
Material 1: E;=450GPa, v,=0.17, E;=70GPa, v ,=0.33, h=700MPa and n=0.1
Material 2: E;=450GPa, v,=0.17, E;=225GPa, v =0.33, h=700MPa and n=0.1
Material 3: E;=450Gpa, v,=0.17, E;=450GPa, v =0.33, h=700MPa and n=0.1
3. ELASTIC-PLASTIC CONSTITUTIVE RELATION OF PARTICLE REINFORCED
METAL-MATRIX COMPOSITE
The particle reinforced metal-matrix composite was idealized as uniformly distributed periodic
arrays of aligned unit spherical cells, and each cell consists of an elastic spherical inclusion
surrounded by an clastic-plastically deforming matrix.
Generally, we assume that the macro elastic-plastic constitutive relationship can be expressed
with deformation theory as follows,

B —ES 4 EP =CyZ, 42— s (16)
i =By B =Chasun 2 AGED) i
where E, Ej, E! are the total macro strain, elastic strain and plastic strain, respectively, C;, is the

ij? ij?
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macro elastic compliance tensor of the unit cell, T, is the total macro stress, S; is the deviatoric
part of average macrostress.

In Eq.(16), the function A(E?)is describing the work hardening properties of the unit cell
composites. It is worth to noting that the constitutive relationship of the composites will be

completely determined if the functionA(E?) is given. To simplify the evaluation of the

function A(E?), the elastic deformations of both inclusion and matrix were neglected, then the
particle can be simplified as a rigid inclusion, and the matrix was simplified as an incompressible
power law material. The macro elastic compliance Cy, can be obtained according to Mori and
Tanaka Method. In the calculation, the displacement function can be expanded in series with
unknown coefficients which can be determined by the minimum principle (see Ji and Wang[1]).

The macro stress and strain relation of unit cell is obtained,

s (E. Y
Z_e:_n[,eﬁj (17)
G, O, \0g,
where
n+l
Z =F(f,n,H/R) =(3] 1 fy EX'dVE" (18)
o 2) v

The elastic-plastic relation of strain and stress of composites Al-Al,O, was investigated in Fig.4.
The predicted results were compared with the finite element results of Llorca and Gonzalez[13].
The relation of hardening factor F(p,n) versus particle volume fraction p was calculated at a
various value of strain hardening exponent n, the calculating results were described in Fig.5
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Fig. 4 Predicted stress and elastic- Fig. 5 Effects of strain hardening
plastic strain curve compared with FEM exponent and particle volume fraction on
results of Llorca and Gonzélez[13] the constitutive relation of composites

4. CONCLUSION

An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional
two-phase composites which is an exact analytic formula without any simplified approximation and
can be expressed in an explicit form. For composites with the spherical particles, the present results
are close to those of the solutions from the generalized self-consistent model and the Mori-Tanaka
method. The elastic-plastic stress-strain relations of two-phase particulate composites are obtained
by the embedded cell model, in which the matrix is elastic and the particle is elastic-plastic. In
addition, the macroscopic elastic-plastic constitutive relation of particle reinforced composites
(PRC) is investigated by a systematic approach[1] in which the matrix is elastic-plastic and the

particle is elastic.
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Appendix Components of Eshelby's S;;, Tensor

W 00N W

For a spheroidal inclusion with the symmetric identified as x,, the components of Eshelby's tensor Sy, are:
2 2
Suu - 1—2v0+¥— 1-2v, + 3)” 3
21-v,) V-l -1
1 5 1 9
Sy =Sun = -+ 1-2vy———
U gy ) K -1 Al vﬂ){ JTrO 1)]g

Sy =S - —}i——— 1-2v +—3—
2233 3322 A1-v,) 2(7»2——1) o 40‘2_1) 2

1 ¥ S
Sml=_2 YRR EYIT]
(=v) N =1 41-v){ ¥ -1

1 1 1 3
S =S =g 1 g
1 » 3
Spyzs = A e+ 1= 2y ————
B 4(1—v0){2(}3—1)+[ Yo 4(73—1)]g}

1 S 302 +1)
S22 =Sy = m{l —2v, —H—E[i—Zvn T g

where v, is Poisson’s ratio of the matrix, A is the aspect ratio of the inclusion and g is given by

Suu =

- (1 - zvo):lg

: 7 {07 -1 —arccosh Loast
g -1
A {arccosk—)»(l - }, L<l
W -1y
For a spherical inclusion, they simplify to
7-5
St =S =Sy = 151 _“"o)
o
Svy -1
Sz =Sum =Suu = W\l}o—_v_)
0
4-5v,

Siz12 =Sy = Sy = m

(A1)

(A2)

(A3)
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