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Modeling and simulation of liquid pulsed particulate fluidized beds
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Abstract

Pulsed fluidization is of considerable interest in process engineering for improving fluidization quality. Quantitative understanding of the

pulsed two-phase flow behaviors is very important for proper design and optimum operation of such contactors. The main objective of this

study is to understand the mathematical models for liquid pulsed particulate fluidization and its dynamic processes. The state of the arts of the

Two-Fluid Model (TFM) and its constitutive relationships are discussed and then, the Local Equilibrium Model (LEM), a simplified version

of TFM, is developed and solved for liquid pulsed fluidization. LEM is proposed to describe the liquid pulsed fluidization with acceptable

engineering accuracy as compared with the experimental data, and its shortcomings are also discussed at length by analyzing the relaxation

processes of the two-phase flow due to a jump change of fluidizing velocity and the structure of concentration discontinuity which forms in

the bed collapse process. The main shortcoming of LEM is that some detailed information in the flow fields is lost. However, errors only exist

in a time interval of tens of milliseconds (several times of particle relaxation time) and a spatial span of several millimeters (several times of

particle diameter).

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fluidized beds are common and important reactors in

process engineering because of the good mass and heat

transfer rate between the fluid and the particles, and between

the particles and the sidewall. It is well known that there are

non-uniform flow structures such as bubbles and slugs in

fluidization [1]. Large bubbles and slugs are undesirable for

efficient operations, because they can reduce the contact

efficiency.

Many studies show that fluidization quality can be much

improved by externally applied vibrations or pulsations [2–

8]. As a method of eliminating slugs and gas channeling,

reducing the size of bubbles, thus improving the fluid-

ization quality, pulsed fluidization is an operation in which

the fluidizing velocity U(t) pulsates with time as a
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rectangular wave, a cosinoidal wave or any other patterns.

Pulsed-stabilized fluidization can increase the heat transfer

coefficient when used for coal combustion [7]. Pulsation

can suppress the bubble flow, produce more uniform

fluidization and increase the gas–solid contact efficiency

[5]. Although many people have studied the behaviors of

the transient flows in fluidized beds [9–17], however, the

flow patterns of unsteady two-phase flows are very

complex, the quantitative understanding of the flow in

pulsed fluidized beds is far from being complete. Earlier

papers have usually focused on predicting the bed height

variation in the simple processes such as the bed expansion

or bed collapsing (bed contraction) when the fluidizing

velocity suddenly changes, corresponding to very low

pulsation frequency of U(t). Few papers predicted the bed

height, especially the distribution of particle concentration

along the bed height when the pulsation frequency of U(t)

is not very low.

In order to quantitatively understand the complex flow

behaviors in the pulsed fluidized beds, as the first step, the
(2005) 138 – 155
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main aim of this study is to select and develop proper

mathematical models for liquid pulsed particulate fluid-

ization, predict the dynamic processes in the beds and

provide a basis for understanding more complex gas pulsed

fluidization. The direct application of the particulate fluid-

ization is encountered in most liquid fluidized beds and

some gas fluidized beds, for example, SiO2 nano-scale

particles are recently found to be particulately fluidized with

porous multi-stage agglomerates [18].

In despite of some phenomenological analogies between

liquid particulate fluidization and gas–solid particulate

fluidization, there exist certain differences in mechanisms

of inter-particle interactions and dynamic responses of

phases. The most noteworthy ones includes (1) the inertia

difference between the two-phase flows (same order in solid–

liquid fluidization but three order-of-magnitude in gas–solid

fluidization) and the resulted dynamic responses in pulsed

flows, (2) the inter-particle collisions (very weak inter-

particle collision in liquid fluidization versus extremely

strong collision in gas fluidization which could not be

ignored, especially for dense gas–solid flow), (3) electro-

static charge effects (very weak in liquid but strong in gas–

fine solid case), and (4) wall boundary effects (impedance

due to fluid–solid wall interaction). Because of the above

mentioned differences in liquid fluidization and gas fluid-

ization, the developed model and the conclusions are

restricted to the area of liquid pulsed fluidization and one

should be careful to extend the liquid–solid modeling

directly to gas–solid fluidization without capturing all the

major mechanism differences.

The Two-Fluid Model (TFM) is commonly used to

describe the fluid–particle two-phase flow, with the fluid

and particles assumed as interpenetrating phases and

coupled with mass, momentum or energy exchange [19–

22]. The key point is that the equation set must be closed

with appropriate constitutive relationships, which makes the

model rather complex. Although many constitutive relations

are still being studied up to now, the Two-Fluid Model (or

Multi-Fluid Model) has been widely used for modeling,

analyzing and simulating of fluidization systems, and has
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Fig. 1. Transient distribution of particle concentration in a pulsed fluidized bed wh

period 1 s and semi-off period 3 s), the numerical value of bed height and solid
become a useful tool for design and scale up of efficient

reactors [23,24].

In our liquid pulsed fluidization experiment, the one-

dimensional characteristic of the flow, i.e., the distinct planar

wave characteristic of particle concentration in the bed can

be obviously seen. The concentration waves (expansion

wave and shock wave) travel upwards from the distributor

(x =0) (See Fig. 1). Fig. 1 shows the transient distribution of

particle concentration in the entire column of the test section

along the bed height at different times in a period, recorded

by a digital camera. The test section is the whole bed just

from above the distributor (x =0.04 m) to the bed surface

h(t). The gray scale of the photos represents the particle

concentration: the darker the photo, the denser the particle

concentration and the accurate digital results of solid fraction

in Fig. 1 are shown in Fig. 11(a–f). The experimental

systems, measurement method and measurement uncertainty

analysis are described in Section 4. From Fig. 1, one can

know that the bed height h(t) oscillates up and down in a

cycle, a concentration wave from the distributor (x =0)

periodically travels upward as a result of the periodical

change of the fluidizing velocity U(t), the dilute and dense

sections of particle concentration distribute alternately,

accompanying concentration discontinuities a, b and c

between the dilute and dense sections. Meanwhile, the

particle concentration along the bed height distributes quite

uniformly at any cross-section, and wall boundary effect is

inconspicuous. The above facts show that the axial move-

ment of the two-phase flow prevails in the pulsed fluidized

bed. As a first approximation, it is appropriate to use the one-

dimensional mathematical model to simulate the main

characteristic of the flow, i.e., particles moving up and down.

In a steady state of a conventional fluidization, the cross-

sectional averaged particle velocity is zero, and the non-

uniformity of the axial velocity at different radial points in a

cross-section (such as core–annulus flow) is obvious when

compared with the zero cross-sectional averaged velocity,

the radial velocity also becomes important, thus the multi-

dimensional flow structures exists in a statistically steadily

fluidized bed [25,26]. In the pulsed fluidization, although
 3.2s t = 4.0s

b

c

h(t)—bed surface

concentration shock wave

concentration shock wave

t (s)

en U(t) varies with time as a rectangular wave with a period of 4 s (semi-on

volume fraction can be seen in Figs. 10 and 11(a– f) respectively.
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the axial velocity is also non-uniform at different radial

points and the radial velocity is not always small, however,

their importance becomes secondary when compared with

the large cross-sectional averaged axial velocity. Multi-

dimensional models can indeed provide much more detailed

information in the bed, however, one’s attention may be

scattered by these details and some important flow

characteristics might be ignored (for example, the wave

characteristic of the particle concentration in pulsed fluid-

ization). If one mainly concerns the non-uniform flow

profile or the radial mass and momentum transfer, a multi-

dimensional model is necessary [27]; however, if one

mainly concerns the variation of flow parameters with time

and along the bed height, a one-dimensional model still has

its advantage: the model is simple and helps to capture the

main physical characteristic of the flow. Up to now, the

unsteady flow in pulsed fluidized beds is not fully under-

stood, the results gotten from the one-dimensional model is

still of importance from both a theoretical and practical

point of view. It is shown that the numerical results of the

one-dimensional model well fit the experimental data as a

whole.

The fluidizing velocity U(t) is limited in the region

between the minimum fluidizing velocity Umf and the

particle settling velocity UT, (Umf<U(t) <UT), which

excludes the persistent contacting between particles and

the case of particle free in a region near the distributor. This

limitation guarantees the continuum assumption for solid

phase valid and the application of Richardson–Zaki and

Ergun equation appropriate.
1 Bouyancy is one part of the inter–phase force.
2. Two-Fluid Model

The model used in this study is based on the following

assumptions: the two phases are incompressible, the fluid

density qf and the particle density qp are constants; the ratio

of the bed diameter and the particle diameter is large enough

to ignore the drag force of the sidewall; the gradient of

viscous normal stress of fluid phase sf,xx is ignored because

it is much smaller than that of fluid pressure. Under the

above assumptions, the equations used by Anderson et al.

[28] and Duru et al. [29] can be written as

Bap
Bt

þ
B apup
� �
Bx

¼ 0; ð1Þ

Baf
Bt

þ B afufð Þ
Bx

¼ 0; ð2Þ

qp

B apup
� �
Bt

þ
B apu2p

� �
Bx

3
5

2
4

¼ � ap
Bp

Bx
þ

B � pp þ sp;xx
� �

Bx
� apqpg þ Fp; ð3Þ
qf

B afufð Þ
Bt

þ
B afu2f
� �
Bx

	

¼ � af

Bp

Bx
� afqfg � Fp; ð4Þ

ap þ af ¼ 1: ð5Þ

where ap, af, up, and uf are the volume fraction and velocity

of the particle phase and fluid phase respectively, Fp is the

inter-phase force per unit volume except for buoyancy1, p is

the fluid phase pressure, pp, sp,xx are particle phase pressure
and viscous stress respectively.

Adding Eq. (1) to Eq. (2) and integrating the result along

the bed height, one can get the continuity equation for the

liquid–solid mixture to substitute Eq. (2)

apup þ afuf ¼ U tð Þ: ð2VÞ

Eliminating flp /flx and Fp from Eqs. (3) and (4),

respectively, one can obtain the equation concerning the

inertial difference between the two phases and the liquid–

solid mixture momentum equation

qp

Bup

Bt
þ up

Bup

Bx

��
� qf

Buf

Bt
þ uf

Buf

Bx

��

¼ Fp

apaf
� qp � qf

� �
g þ 1

ap

B � pp þ sp;xx
� �

Bx
; ð3VÞ

B

Bt
apqpup þ afqfuf
� �

þ B

Bx
apqpu

2
p þ afqfu

2
f

� �

¼ � Bp

Bx
þ

B � pp þ sp;xx
� �

Bx
� apqp þ afqf

� �
g: ð4VÞ

The five unknowns ap, af, up, uf and p can be calculated

by solving the equation set Eqs. (1)–(5). Substituting Eqs.

(3V) and (4V) for Eqs. (3) and (4), one can solve the equation

set (1), (2V), (3V) and (5) to obtain ap, af, up, uf, then obtain p
by integrating Eq. (4V) along the bed height.

Fp includes the inter-phase drag force FD, the virtual

mass force Fvm and so on,

Fp ¼ FD þ Fvm þ > >: ð6Þ

Introducing the momentum exchange coefficient b, one can
express the drag force FD as

FD ¼ b uf � up
� �

: ð7Þ

Many authors [30,31] computed the momentum exchange

coefficient using

b ¼ qp � qf

� �
gapa

2�nð Þ
f =uT: ð8Þ

where n is the Richardson–Zaki exponent which depends

on the particle settling Reynolds number ReT=dpuTqf /lf.

Some authors [32–34] used the combined equations

proposed by Ergun [35] when af�0.8 and Wen and Yu
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[36] when af >0.8 to compute the momentum exchange

coefficient

b ¼
�fapd

�2
p a�1

f 150ap þ 1:75Re

 �

afV0:8ð Þ
3
4
CD �fapd

�2
p a�2:7

f Re af>0:8ð Þ ;
(

ð9Þ

where CD is the drag force coefficient for a single particle,

CD ¼
(
24 1þ 0:15Re0:687

� �
=Re ReV1000ð Þ

0:44 Re>1000ð Þ

and the Reynolds number is defined as Re =dpqfaf |
uf�up |�f

�1. Researches on the virtual mass force Fvm are

much scarce as compared with those on the drag force. The

various published expressions about the virtual mass force

are not checked enough yet. Drew et al. [37] have proposed

the following expression for the virtual mass force:

Fvm ¼ � Cvmapqf

Bup

Bt
þ uf

Bup

Bx
� Buf

Bt
� up

Buf

Bx




� 1� kvmð Þ uf � up
� � B uf � up

� �
Bx

	
; ð10Þ

where the model parameters Cvm and kvm are the functions

of ap, and 0<Cvm<0.5, 0<kvm<2. Some authors [29] using

the following expression for the virtual mass force:

Fvm ¼ � Cvmapqf

Bup

Bt
þ up

Bup

Bx
� Buf

Bt
� uf

Buf

Bx

	

:

ð11Þ
Generally speaking, the virtual mass force is in direct

proportion of the relative acceleration between the two

phases; however, there exist many expressions due to the

different understandings about the relative acceleration [38].

Any kind of particle random motion induces momentum

transfer. The solid phase pressure pp and the normal stress

sp,xx are the representations of such momentum transfer.2

The particle random motion arises from the turbulent

fluctuations of the fluid and the collisions between

particles. More and more attentions have been drawn to

the study on solid phase pressure pp and normal stress

sp,xx because it is the main factor determining the stability

of the flow in fluidized beds [1,39]. However, various

expressions about them greatly differ from each other,

indicating the necessity to study further. The solid phase

pressure pp is usually thought to be in relation to the local

particle concentration ap. Needham and Merkin [1],

Homsy, et al. [40], Harris and Crighton [41] regarded pp
is a monotonously increasing function of ap. Needham and

Merkin [1] regarded pp is the linear function of particle

concentration ap, pp=p0ap, where p0 is a constant. In

order to prevent ap from being larger than the packed
2 In fact, both pp and sp,xx belong to the stress of solid phase. The

spherical part of the stress tensor which depends on particle concentration

ap is usually called pressure pp and the remainder which depends on the

gradient of solid phase velocity is called partial stress tensor. sp,xx is a

component of the partial stress tensor.
concentration ap,c(ap,c�0.6137), Harris and Crighton [41]

proposed the following expression:

pp ¼ p0
ap

ap;c � ap
: ð12Þ

Batchelor [39] did not think pp is a monotonously

increasing function of ap, and the expression for pp has

an extremum in a medium concentration. In the uniform

fluidized state, pp can be expressed as

pp ¼ apqpH ap
� �

U 2,qp

a2p
ap;c

1� ap
ap;c

��
U2: ð13Þ

Zenit et al. [42] measured the solid phase pressure using

the high frequency piezoelectricity transducer in a solid–

liquid system and compared the experimental results with

many published approximate expressions for pp. It is

shown that various expressions greatly depart from the

experimental results except for Eq. (13). Recently, Duru et

al. [29] have studied the concentration wave shape induced

by the instability of the solid–liquid flow and derived the

derivative of pp :dpp /dap=0.7qfuT
2 or dpp /dap=0.2qf duT

2.

These expressions differ from Eq. (13). Therefore, it is

necessary to further study the model for pp. A modified

relationship of Duru et al. [29] is used in the simulation in

this study

pp ¼ sqpu
2
Tap= ap;c � ap

� �
: ð14Þ

where s is an adjustable parameter.

The solid phase stress sp,xx can be expressed as [28,29]

sp;xx ¼
3

4
�p

Bup

Bx
: ð15Þ

Both the theoretical and experimental results about the solid

phase viscous coefficient ap are imperfect. Batchelor [39]

used the expression: �p=bldpapqpU, where bl is the

model parameter with the order of unit and varies with ap.

Anderson et al. [28] and Glasser et al. [31] used the

expression �p=Aap / [1� (ap /ap,c)
1 / 3] to study the insta-

bility of fluidized beds, where A is a model parameter with a

dimension of viscosity. Duru et al. [29] obtained the

expression of �p by experiments

�p ¼ ClqpdpuT ap;c � ap
� ��1

; ð16Þ

where Cl is 0.18 in their study.

The above equation set Eqs. (1)–(5) including the pp,

FD, Fvm and sp,xx terms is named the General Two-Fluid

Model (GTFM) in this study.

For a constant fluidizing velocity U, when the flow in the

bed is in a steady and uniform state, flu /flt=0 and flu /

flx =0 for an arbitrary variable u (except for pressure p).

Under such circumstances, Fvm=0, Fp=FD=b(uf�up) and

Eq. (3V) can be simplified as

uf � up ¼ apaf qp � qf

� �
g=b: ð17Þ
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Introducing Eqs. (8) and (2V) into Eq. (17) yields

U � up ¼ af uf � up
� �

¼ uTa
n
f : ð18Þ

Because flup /flx =0 and up | x=0=0 in a steady and uniform

state, it is concluded that up(x)=0 everywhere in the bed, Eq.

(18) becomes the well-known Richardson–Zaki relationship,

U =uTaf
n [43]. Richardson–Zaki relationship has been

demonstrated by even earlier fluidized bed experiments

[44]. More recently, the relationship has been verified using

direct numerical simulation [45]. It is proper to use Eq. (8) to

express the drag force in fluidized beds. Introducing the

Ergun relationship of Eq. (9) into Eq. (17) yields U�up=

af(uf�up)= (qp�qf)gdp
2Af

�1af
3(150ap+1.75Re)

�1.

Our experimental results show that Richardson–Zaki

relationship is more precise than Ergun relationship (Eq. (9))

when used to express the drag force (see Fig. 2) under the

experimental conditions. The open points in Fig. 2 was

gotten by a series of steady fluidization experiments (see

Section 4), the results of Richardson–Zaki relationship and

Ergun relationship are also given in the figure.

Since the constitutive relationships for pp, Fvm and sp,xx
are still open now, neglecting these terms in Eqs. (3) and (4),

one can simplify Eqs. (1)–(5) and get the inviscid flow

equations with the drag force only remained in the inter-

phase force between the phases, which is named the Basic

Two-Fluid Model (BTFM) in this study. BTFM has been

used since earlier researches. Recently, a multi-dimensional

simulation of fluidization using this version of Two-Fluid

Model has been performed by Zhang and VanderHeyden

[46]. Although the equations in BTFM are simple, yet not

without shortcomings, in particular, the eigenvalues of

BTFM are complex numbers

k1;2 ¼
afqpup þ apqfuf

afqp þ apqf

Fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiafapqpqf
p

afqp þ apqf

juf � upj; ð19Þ

thus making the equation set be ill-posed for initial-value

problems. Complex eigenvalues indicate linear instability;

small disturbances added to a constant solution of the
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Fig. 2. Comparison between the Richardson–Zaki and Ergun relationship

with the experimental results.
system grow large rather than damp. For more details,

please refer to [22,47,48]. The instability always existing in

an ill-posed system suggests that the model is not treating

small-scale phenomena correctly. Eq. (19) indicates that the

larger the relative velocity of the two phases, the larger the

imaginary part of the eigenvalues and the more unstable the

equation set. Generally speaking, any initial small disturb-

ance is enlarged in its traveling process for an ill-posed

equation set. However, it may not be so serious in practical

numerical simulation. The numerical viscosity produced by

discretizating the partial differential equations suppresses

numerical oscillations, for example, the simulation per-

formed in [15,46] and the simulation of Case A in Section 5

of this paper. If the pulse height of fluidizing velocity DU

(=U2�U1, U2 and U1 are fluid superficial velocity during

the semi-on period T2 and semi-off period T1, respectively,
see Fig. 3a) is too large, however, the numerical oscillations

grow quickly and computation fails, for example, the

simulation of Case B in Section 5.

If Eqs. (14) and (11) for pp and Fvm are introduced in

Eqs. (3) and (4), the eigenvalues of the equation set Eqs.

(1)–(5) are

k1;2 ¼
q1up þ q2ufF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af q1 þ q2ð ÞG� q1q2 uf � up

� �2q
q1 þ q2

;

ð20Þ

where q1 = af(qp + qfC vm / af); q2 = apqf(1 +C vm / af);
G =flpp/flap= sqpuT

2ap,c(ap,c�ap)
�2. If G is large enough,

GTFM becomes hyperbolic.

The boundary and initial conditions are:

x ¼ 0 : up t; 0ð Þ ¼ 0; ap t; 0ð Þ ¼ 1� U tð Þ=uTð Þ1=n; ð21Þ

x ¼ h tð Þ : up t; hð Þ ¼ dh tð Þ=dt; ð22Þ

t ¼ 0 : ap 0; xð Þ ¼ ap;0; up 0; xð Þ ¼ 0; h 0ð Þ ¼ h0: ð23Þ

where a uniform fluidized state is assumed at t =0, ap,0 and

h0 are the initial particle concentration and bed height

respectively, h(t) is the instantaneous bed height, up(t,h) is

the instantaneous particle velocity at the bed surface.

The first order forward finite difference scheme and a

five order WENO (Weighted Essentially Non-Oscillatory)

scheme [49] are used to solve BTFM and GTFM

respectively. The numerical results compared with exper-

imental results are shown in Section 5. Our numerical

experiments show that, under certain conditions, especially

when the pulse height of fluidizing velocity DU is large, the

simulation using BTFM often fails unless a large numerical

viscosity (corresponding to a relative coarse grid) is used to

suppress the unstable solutions, while the numerical solution

of GTFM is always convergent only if G is large enough.

Although the inclusion of pp and Fvm in GTFM can

make it well-posed, the understanding of the constitutive

relationship of pp, Fvm and sp,xx are not complete now, and
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the adjustable parameters in these expressions cannot be

accurately determined beforehand and are chosen at will to

some extent. In order to grasp the main characteristic of the

pulsed flow in the bed, we intend to propose a simplified

model of BTFM, in which there are no adjustable

parameters, to avoid the instability caused by its ill-posed

property.
3. Local equilibrium model (LEM)

There are many approximate methods to avoid the

complex eigenvalues. For example, neglecting the second

term on the left hand side of Eq. (3V), one can get

qp

Bup

Bt
þ up

Bup

Bx

��
¼ FD

apaf
� qp � qf

� �
g � 1

ap

Bpp

Bx
:

ð24Þ

Eq. (24) corresponds to the solid phase momentum equation

of the Model B in Gidaspow’s book [20] and the

eigenvalues become

k1;2 ¼ upF
ffiffiffiffiffiffiffiffiffiffiffi
G=qp

q
I ð25Þ

For small value of G, the eigenvalues are nearly equal.

Particles essentially move with their own velocity, with the

wave effect in the bed negligible. Particularly, if the value of

G equals zero, then k1,2=up and the eigenvalues are equal,

thus making the model be still unstable to small disturbance

according to the theory of Wallis [50].3
3 Though the eigenvalues are real, the speed of the dynamic wave is zero

and it is smaller than the kinematic wave speed.
Another method is that both terms on the left hand side of

Eq. (3V) are neglected based on BTFM and the first order

partial differential equation degenerates into an algebraic

relationship

0 ¼ FD � qp � qf

� �
apafg: ð26Þ

In Eq. (26), the relative motion between the two phases is

fully determined by the transient balance between the inter-

phase drag force FD and the gravity force (corrected by the

buoyancy) per unit mixture volume, �apqpg +ap(apqp+

afqf)g, where �apqpg is the gravity force of the particles in

that volume and ap(apqp+afqf)g is buoyancy to the

particles produced by the surrounding liquid–solid mixture.

Introducing Eqs. (7) and (8) into Eq. (26) yields

U tð Þ � up t; xð Þ ¼ uT 1� ap t; xð Þ
� �n

: ð27Þ

There are no partial derivatives of the variables to time t and

space coordinate x in the above equation, it is the local

equilibrium equation among the fluidizing velocity U,

particle velocity up and particle volume fraction ap, thus it

can be named the Local Equilibrium Model (LEM).

The above two methods, ignoring either one term or the

difference of the two terms on the left hand side of Eq. (3V),
are the approximations of the original model. It is difficult to

judge which method introduces a smaller error for the dense

liquid–solid flow. Eq. (27) is much simpler than Eq. (24)

and clearly describes the wave characteristic of the flow in

the bed (see Eq. (28)). Therefore, we would choose Eq. (27)

to model the momentum transfer in the pulsed bed.

Many authors have used Eq. (27) as a direct general-

ization of the Richardson–Zaki relationship [43]. For

example, Slis et al. [9] have studied the response of the

bed height of a liquid fluidized bed to a sudden change of

fluidizing velocity.
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Introducing Eq. (27) into Eq. (1) and eliminating particle

velocity up one can get a hyperbolic concentration wave

equation

Bap
Bt

þ V
Bap
Bx

¼ 0; ð28Þ

where V is the concentration wave speed and the eigenvalue

of the equation

k ¼ V ¼
B apup
� �
Bap

¼ up þ ap
Bup

Bap

¼ U tð Þ þ nap 1� ap
� �n�1 � 1� ap

� �nh i
uT: ð29Þ

For a given fluidizing velocity U1 to U2, the concen-

tration wave speed V has a maximum at ap=ap,cr=2 / (n +1).
Under our experimental conditions n =2.414, and ap,cr =

0.5858�ap,c, thus V usually increases with the increase of

ap.
When the fluidizing velocity U suddenly increases from

U1 to U2, a disturbance with finite amplitude, (Dap)exp=

ap,2�ap,1<0 (where ap,2=1� (U2 /uT)
1 / n, ap,1=1� (U1 /

uT)
1 / n), is introduced at the bottom of the bed. This finite

disturbance can be regarded as the accumulation of many

infinitesimal disturbances. Because ap,1 >ap,2 and the

disturbances in the upper section with high particle

concentration travel faster than the disturbances in the

lower section with dilute particle concentration, i.e.,

V(ap,1)>V(ap,2), the transitional section from ap,1 in the

upper section to ap,2 in the lower section broadens when it

travels upward in the bed.

By contraries, when the fluidizing velocity U suddenly

decreases from U2 to U1 a disturbance with finite amplitude,

(Dap)coll=ap,1�ap,2>0, is introduced at the bottom of the bed.

This finite disturbance can also be regarded as the accumu-

lation of many infinitesimal disturbances. The disturbances in

the lower section with high concentration travel faster and

overtake the disturbances in the upper section with dilute

particle concentration, and the transition section from ap,2 in
the upper section to ap,1 in the lower section thus remains sharp

when it travels upwards in the bed. A concentration

discontinuity (or shock wave) occurs in the collapse process.

The above behaviors of concentration wave in the

fluidized bed are very similar to those of the dynamic waves

in a shock tube (or a pipe with a piston) in gas dynamics.

There exist dilatation wave, compression wave and shock

wave in both the pulsed fluidized bed and the shock tube. For

example, in a pipe with a piston moving right at a velocity of

Upis, the gas before the piston flows at the same velocity as

the piston. If the piston velocity suddenly decreases from

Upis,2 to Upis,1(Upis,2>Upis,1) at the time t = t0, a series of

dilatation waves occurs in front of the piston and propagates

right (corresponding to the dilatation waves on the upside of

the distributor during expansion process in fluidized bed),

followed by a stable state flowing at the velocity ofUpis,1. On

the contrary, if the piston velocity suddenly increases from
Upis,1 toUpis,2(Upis,1<Upis,2) at t = t0, a series of compression

waves occurs before the piston and propagates right.

Because the speed of the compression wave arising earlier

is slower than that arising later, the later will catch up with

the earlier and they will aggregate into a dynamic shock.

Let Vs be the speed of the concentration shock.

Integrating Eq. (1) across the shock wave yields the shock

conservative condition

Vs ap;b � ap;f
� �

¼ ap;bup;b � ap;fup;f : ð30Þ

Substituting Eq. (27) into Eq. (30) yields

Vs ¼
ap;bup;b � ap;fup;f

ap;b � ap;f

¼ U tð Þ �
ap;b 1� ap;b

� �n � ap;f 1� ap;f
� �n

ap;b � ap;f
uT; ð30VÞ

where ap,b, ap,f are the particle volume fraction at the back

and front of the shock and up,b, up,f are the particle velocity

at the back and front of the shock respectively.

Eq. (28) is hyperbolic and avoids the divergence of

numerical simulation caused by the ill-posed property of

BTFM. In this study, we use the method of characteristics to

solve Eqs. (28) and (30). At the very beginning of an

expansion process, a series of dilatation waves occurs on the

upside of the distributor, every dilatation wave corresponds

to a line with a slope of V (see Eq. (29)) on the x – t plane.

According to Eq. (28), particle concentration keeps a

constant along the corresponding characteristic line. Fluid-

ized state gradually expands from particle concentration ap,1

to particle concentration ap,2, the dilatation waves distribute

in the fan AOB on the x–t plane, whose upper boundary is

the line with a slope of V(ap,1) and lower boundary is the

line with a slope of V(ap,2) and V(ap,2)<V(ap,1). In practical

computation, we use finite times (N) of expansion (corre-

sponding to N characteristic lines on the x – t plane) to

represent the continuous expansion from ap,1 to ap,2 (see the
thin lines in the fan AOB in Fig. 3b). At the beginning of a

collapse process, a series of compression waves from ap,2 to

ap,1 occurs on the upside of the distributor. The compression

waves aggregate into a discontinuity of particle concen-

tration (concentration shock wave) with a shock speed Vs

that meets the shock conservative condition Eq. (30). We

use the shock line to replace these characteristic lines, (see

the thick line CD Fig. 3b). After the fluidizing velocity U(t)

suddenly changes each time, the slope of every character-

istic line and the shock wave line also change, see Eqs. (29)

and (30V).The numerical results are shown in Section 5.
4. Experimental apparatus and method

4.1. Experimental apparatus

Fig. 4 is the schematic diagram of the experimental

facility. The experiments on solid–liquid pulsed fluidization
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were carried out in a 30-mm ID, 2-m high Plexiglas tube

with a porous distributor (3) mounted at its bottom. Water

from upper tank (8) flows down to fluidize the glass beads

(2) in fluidized bed (1). The pulse frequency (1 /T), pulse

width (fraction of semi-on period in a whole period, i.e., T2 /

T) and pulse height DU of the fluidizing velocity are

controlled by a ball valve (9), two time-delay relays and a

solenoid valve (10). When the solenoid valve is shut off,

fluid flows only through the ball valve (9), and U(t) in the

bed (1) equals U1; when the solenoid valve is turned on,

water flows through both the ball valve (9) and the solenoid

valve (10), and U (t ) in the bed (1) equals U 2

(U2>U1>Umf). The time-delay relays control the solenoid

valve on or off and U(t) pulsates with time as a rectangular

wave between U2 and U1 to impart pulsed fluidization in the

bed (1). In order to reduce the non-uniformity of the inlet

flow near the distributor, a section with packed small glass

beads was mounted below the distributor (3) to uniformly

distribute the liquid flow. The flow rate was measured using

a platform balance and a stopwatch. The bed height h(t) and

the transient distribution of particle concentration ap(t,x)
were recorded by a Sony\ digital video recorder (16) (DCR-

TRV6E). The properties of particles used are shown in Table

1. The sketch map of fluidizing velocity vs. time is

illustrated in Fig. 3a.

4.2. Experimental method

We put a ruler (11) beside the bed in the experiment and

record the variational process of the bed height by the

recorder (16). The recorder can record 25 frames per second.
Table 1

Physical properties of the particles and fluid

Particles dp (mm) qp (kg/m
3) uT (m/s) n sp (s) qp (kg/m

3)

Glass beads 1.8 2600.0 0.1937 2.412 0.032 1000.0
The variation of bed height vs. time is read by playing the

tape frame by frame. In order to get the settling velocity uT
and the Richardson–Zaki exponent n, we perform a series

of steady fluidized experiments, recording the different bed

height hi to get corresponding particle concentration ap,i at

different fluidizing velocities Ui using the particle con-

servative relationship hp,cap,c = hiap,i(i =1, 2>), where

ap,c=0.6137 is the packed particle concentration, hp,c is

the bed height at the packed state and af,i=1�ap,i. We fit

the different data (Ui and af,i) using Ui =uTaf,i
n and get

n =2.414 from the slope B, and the settling velocity

uT=0.1937 from the intercept A (see Fig. 5 and Table 2).

The particle Reynolds number ReT=348.7. According to the

relationship suggested by Richardson and Zaki [43],

n =4.4ReT
�0.1=2.450. The fitting result is very close to it.

4.3. Measurement correction

In order to measure the particle concentration distribution

along the bed height, calibration must be performed to get

the relationship between the gray scale of the digital photos

and the particle concentration. We carried out the experi-

ment at night to eliminate the effect of the variational

environment light, and used six 500 W-iodine–tungsten

lamps in vertical direction to get uniform background light.

We performed space corrections considering the non-

uniform phototonus of the film at different points even to

uniform light. For example, Fig. 6 shows that for a uniform

state ap=0.2417 throughout the bed, the gray scale of the

photo is non-uniform along the bed height. After we do the

nonlinear space corrections, we can get a much more

uniform distribution of the particle concentration, the
Table 2

Fitting results of the coefficients A and B in Fig. 5

Parameter Value Error

A �1.641 0.00802

B (n) 2.414 0.01702

Ln(U)=A +B Ln(af).
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standard deviation is about 0.7% and the system error is

about 1.0% (Fig. 7).
5. Numerical results and comparison with experimental

data

In this section, we show the numerical results from

GTFM, BTFM and LEM. We also give the experimental

data to check the numerical simulation results. The test

cases are listed in Table 3.

5.1. Case A

Fig. 8 shows the bed height variation with time

responding to a periodically pulsed fluidizing velocity from

GTFM, BTFM, LEM and the experimental data.

At the beginning of the pulsed process (t< tA in Fig. 8),

the concentration disturbances from the distributor do not

travel to the bed surface, the particle concentration at the

bed surface is a constant and does not change with time,

particle velocity at bed surface almost varies with the

fluidizing velocity simultaneously4 according to Eq. (27).

The slopes of the bed height before tA are sectionwise

constants with the change of the fluidizing velocity. The bed

height fluctuates periodically after tA according to LEM,

while there is still a short transitional duration from tA to the

time when the bed height completely fluctuates periodically

according to GTFM and BTFM.

Fig. 9 shows the non-uniform distribution of section-

averaged particle concentration (a–f) and particle velocity

(g–l) along the axial direction and the variation at different

times in a period when the flow state in the bed is fully
4 It is assumed that qf = constant and qp = constant, thus the fluid

velocity uf(t,h(t)) and particle velocity up(t,h(t)) at the bed surface

simultaneously change with the fluidizing velocity U(t). U =U2,

h = h0 = 1.37 m and dh / dt = up(t , h ) = 0 when t < 0; U =U 1, dh /

dt =up(t,h)=U1�U2=�0.0512 m/s when 0< t<6s and U =U2, dh /

dt =up(t,h)=0 when 6< t <9s (See Subsection 6.1 for details).
developed and periodical, where t0 in the figure represents

the beginning of one pulsed cycle.

The liquid volume fraction can be gotten from Eq. (5),

af =1�ap and liquid velocity can be easily gotten from Eq.

(2V), uf= (U(t)�apup) /af. Another unknown pressure p can

be gotten by integrating the Eq. (4V) along the axial

direction.

From Figs. 8 and 9, one can see that the results gotten

from GTFM, BTFM and LEM are similar and well match

the experimental results with an acceptable accuracy.

5.2. Case B

In this case, the pulse height of fluidizing velocity

DU(=U2�U1) is larger than that in Case A, and the pulsed

frequency is higher. The dynamic behaviors of this case are

depicted photographically in Fig. 1. Fig. 10 shows the bed

height variation with time responding to a pulsed fluidizing

velocity from GTFM, LEM and the experimental data when

the state is periodical. Fig. 11 shows the non-uniform

distribution of section-averaged particle concentration (a–f)

and particle velocity (g–l) along the axial direction and the

variation at different times in a period.

From Figs. 10 and 11, one can know that the numerical

results obtained from GTFM and LEM also fit the

experimental data well.

In Case A, GTFM, BTFM and LEM work successfully

and the simulation using LEM saves much time compared

with GTFM and BTFM. In Case B, we use a larger pulse

height of fluidizing velocity DU than that in Case A, the

simulation using BTFM is divergent due to its ill-posedness.

Numerical oscillation occurs at the discontinuity of particle

concentration where the particle concentration sharply
Table 3

Summary of the test cases

U1 (m/s) U2 (m/s) T1 (s) T2 (s) h0 (m)

Case A 0.055 0.1062 6.0 3.0 1.365

Case B 0.055 0.1482 3.0 1.0 1.950
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changes. GTFM and LEM can simulate the condition well

compared with the experimental data.

However, several undetermined constitutive relationships

are included in GTFM, the adjustable parameters of which are

not known prior and always chosen at will to some extent.

Although there are no adjustable parameters in BTFM, its

eigenvalues are complex numbers and it is ill-posed for

initial-value problems. Ill-posedness causes divergence of the

numerical results with grid refining, while numerical vis-

cosity may introduce unacceptable errors with too coarse

grids. Although LEM, a further simplification of BTFM, is

very simple, it is highly capable of simulating complex pro-

cesses in pulsed fluidization over a broad range of operating

conditions, and its numerical results well fit experimental

results in both the variation of bed height and the distribution

of particle concentration as fluidizing velocity varies.

According to the experimental data, it is not true that the

concentration discontinuity obtained from LEM is a plane

without thickness as shown in Figs. 9 and 11. The limitation

of LEM will be discussed at length in the next section.
5 Assuming that the relaxation process nearly ends at t = t0+dt, then the

non-uniform section is only limited in a layer no more than l(l =V Idt) above
the distributor, where V is the velocity of concentration wave. From the

discussion below, dt is usually very short (only several times of the system

relaxation time), so the length scale of non-uniform region is very small.
6. Shortcomings of LEM

The above section shows that LEM is highly capable of

simulating the complex processes of pulsed fluidization

even though it is relatively simple. However, it has

shortcomings. In this section, we will discuss the time scale

that errors exist after a sudden change of fluidizing velocity

and the spatial region where errors exist when sharp

gradient of particle concentration exists in the flow field.

6.1. Relaxation processes of the two-phase system after a

sudden change of fluidizing velocity

The uniform flow field in the bed is assumed in this

subsection, i.e., fl /flx =0. If the fluidizing velocity U gets a

sudden increment DU at t= t0, the corresponding increments

of up, uf, ap and af can be obtained from the Eqs. (1), (2V),
(5) and (27): (Dap)LEM = (Daf)LEM = 0, (Du p)LEM =
(Duf)LEM=DU according to LEM, where Du =u(t0+)�
u(t0�), u =ap,af,up,uf,U, . . .. . .. In fact, the inertia of the

two phases is different and it becomes very important when

fluidizing velocity U gets a jump change, the difference of

the inertial forces between the two phases thus has consi-

derable influence. The influence of inertia on the relaxation

process after a jump change of U is discussed hereinafter.

If the virtual mass is ignored, the increments Dap, Daf,
Dup, Duf can be obtained from BTFM, i.e., Eqs. (1), (2V), (5)
and (3V) considering the different inertia between the two

phases, (see Appendix). (Dap)TFM = (Daf)TFM= 0, ap
(Dup)TFM+af(Duf)TFM=DU, qp(Dup)TFM�qf(Duf)TFM=0,

therefore, (Dup)TFM= (qfDU) / (apqf + afqp), (Du f)TFM=

(qpDU) / (apqf +afqp) due to the sudden increment DU at

t = t0. This is not the same as LEM. As (af)t0+= (af)t0�, (uf�
up)t0+= (uf�up)t0- + (Duf)TFM� (Dup)TFM=(uf�up)t0- + (qp�
qf)DU / (apqf +afqp)muT(af)t0+

n� 1, there is a relaxation

process for the relative velocity between the two phases to

adjust itself into another equilibrium state.

For the simple bed expansion and bed collapse processes,

the fluidizing velocity U does not change after t = t0+, and

the distribution of various parameters can be assumed to be

uniform in the bed before the ending of the relaxation

process.5 Under such conditions, the solid phase velocity

and the relative velocity between the two phases in the

relaxation process are (see Appendix)

up tð Þ ¼ U t0þð Þ � uTa
n
f


 �
1� exp � t � t0þð Þ=ssys

� �
 �
þ up t0þð Þexp � t � t0þð Þ=ssys

� �
;

ð31Þ

uf tð Þ � up tð Þ ¼ uf � up
� �

jt0� 1� exp � t � t0þð Þ=ssys
� �
 �

þ uf � up
� �

jt0þexp � t � t0þð Þ=ssys
� �

;

ð32Þ
where the relaxation time of the two-phase system ssys is

ssys ¼
uTanf

1� qf=qp

� �
g

afqp þ apqf

afqp

#"
¼ spa

n
f 1þ ap

af

qf

qp

#"
;

ð33Þ
and sp ¼ uT

ð1�qf =qpÞg
is the relaxation time for a single

particle. For the particle– liquid system in this study,

sp�0.032 s.

In the expansion process when the fluidizing velocity U

suddenly increases from U =U1=0.055 m/s to U =U2=

0.128 m/s, ssys�0.36sp�0.012 s, and in the collapse

process when U decreases from U =U2=0.128 m/s to

U =U1=0.055 m/s, ssys�0.81sp�0.026 s. The two relax-

ation processes after the sudden changes of U are shown in
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Fig. 12. In order to be convenient for comparison, the

changes of velocity from LEM are also shown in the figure.

From Fig. 12, Eqs. (31) and (32), when (t� t0+)

passes several times of ssys (about m�3¨4 times),

up(t)|t>t0+mssys
�U(t0+)�uTaf

n =DU +up(t0�) = (up)LEM|t>t0+,

[uf(t)�up(t)]t>t0+mssys
� (uf�up)|t0�=(uf�up)LEM|t>t0+, that

is, the velocities of two phases almost reach the equili-

brium values computed from LEM.

If the virtual mass force Fvm expressed by Eq. (11) is

included in the inter-phase force Fp, then the relaxation time

of the system is (see Appendix)

ssys ¼
uTanf

qp � qf

� �
g

qp þ Cvmqf=af
� ��

þ ap=af
� �

qf � Cvmqf=afð ÞÞ: ð34Þ
The above analyses show that ignoring the difference of

inertial forces between the two phases introduces certain errors

in a very short period only about tens of milliseconds after U

changes suddenly. After the period, LEM is applicable.

The errors caused by ignoring the difference of inertia

forces between the two phases in a non-uniform flow field are

analyzed hereinafter. For example, the non-uniform flow

field exists in the region tV(af,2,U2)<x< tV(af,1,U2) in sim-

ple expansion process. In this region, using Eqs. (1), (2V), (5)
and (27), the ratio of the difference of the inertial forces and

gravity force corrected by buoyancy can be written as

1

qp � qf

� �
g

qp

Bup

Bt
þ up

Bup

Bx

��
� qf

Buf

Bt
þ uf

Buf

Bx

�� 	


¼
uTnan�1

f

� �2
qp � qf

� �
g

Baf
Bx

apqp þ
n� 1

naf
� 1

�� 2

afqf

#"

¼ � U
sp
t
; ð35Þ

where

U ¼ U n; af ;
qp

qf

��
¼ 1þ qf

afapqp

n� 1

n
� af

�� 2
#"

	 nanf ap
nþ 1ð Þaf � n� 1ð Þ½ � : ð36Þ
U�0.44 when n =2.414, qp /qf =2.6, af =0.6,U continues to

decrease with the increase of af. Therefore, the errors caused
by ignoring the difference of inertia forces between the two

phases become very small when t passes several times of sp.

6.2. Structure of the particle concentration discontinuity in

simple collapse process

Eqs. (1), (2V), (5), (27) show that the flow field is

continuous except for finite number of discontinuities in the

pulsed flow field. According to LEM, these discontinuities

are surfaces without any thickness. The relative velocity

between the two phases has a jump change through the

discontinuity surfaces. The difference of the inertial forces

between the two phases thus must have an important

influence where the relative velocity has a jump. Therefore,

it is improper to ignore the difference of inertia near the

discontinuity surfaces. In experiment, one can observe that

the discontinuity has certain thickness, though it is very thin.

The transition from the upper dilute section to the lower dense

section in the collapse process is analyzed using GTFM.

According to the experimental observation, the disconti-

nuity speed Vs does not change during the collapse process

(it can also be derived from LEM, Eq. (30)). First, we make

a coordinates transform using a moving coordinate n with

the discontinuity speed Vs to substitute the laboratory

coordinate x, i.e., n =x�Vst. Then, the flow is steady in

the moving coordinate, i.e., Bu
Bt
jn ¼ 0. For any variable u,

there are Bu
Bt
jx ¼

Bu
Bt
jn � Vs

Bu
Bn jt ¼ � Vs

Bu
Bn jt ¼ � B uVsð Þ

Bn jt;
Bu
Bx

jt ¼
Bu
Bn jt . Eqs. (1) and (3V) can be transformed into

d ap up � Vs

� �
 �
dn

¼ 0; ð37Þ

qp up � Vs

� � dup
dn

� qf uf � Vsð Þ duf
dn

¼ Fp

apaf
� qp � qf

� �
g þ 1

ap

d � pp þ sp;xx
� �

dn
: ð38Þ

Eqs. (8), (11), (14) and (16) are used to model the

momentum exchange coefficient b, the virtual mass force

Fvm, the solid phase pressure pp and the viscous coefficient

lp, respectively, where s, Cvm and Cl are model parameters.

Letting qr =qf /qf, La = ap,1ap,2(af,2
n�af,1

n ) / (ap,1�ap,2),
Lb =af,1af,2(ap,1af,1

n�1�ap,2af,2
n�1) / (ap,1�ap,2), Lc =ap,c /

(ap,c�ap)
2, Ld= (3 / 4)Cl(1�qr)gdp /uT

2, Y=n(1�qr)g /

uT
2, B = sLa /ap� (1+Cvmqr /af)La

2 /ap
3�qr(1+Cvm /af)Lb

2 /

af
3, Q =1� [ap,1af,1

n / (ap,1�ap,2)�ap,2af,2
n / (ap,1�ap,2)+La /

ap]af
�n, one can get up=Vs�LauT /ap and uf =Vs +LbuT /af

from Eqs. (37) and (2V). Introducing them into Eq. (38)

yields

B
dY

dap

�� �1

¼ � Q� LdLa
1

ap;c � ap
� �

a3p

dY

dap

�� �3
d2Y

da2p

"

þ 2ap;c � 3ap

ap;c � ap
� �2

a4p

dY

dap

�� �2
#
: ð38Þ
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For a small value of Cl, the above equation can be

approximated as

dY

dap
¼ � B

Q
1� LdLa

1

ap;c � ap
� �

a3p

BVQ� BQ V

B3

"(

þ 2ap;c � 3ap

ap;c � ap
� �2

a4p

Q

B2

#)
: ð39Þ

where BV and QV are the derivatives of B and Q to ap,

respectively.

The asymptotic conditions are: YY+V when apYap,2,

and YY�Vwhen apYap,1. Integrating Eq. (39) from ap,2 to

ap,1, the line for ap (Y) is shown in Fig. 13. For comparison,

the result about ap (Y) computed from LEM is also shown in

the figure (represented by a solid line, there is a discontinuity

at Y=0).

From the above results, one can see that the particle

concentration gradually transits from the upper dilute

section to the lower dense section when the inertial force,

the solid phase pressure, the viscous stress, and the virtual

mass forces are considered in GTFM. The thickness of the

transition layer depends on the values of the coefficients s,
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Fig. 11. Distribution of particle concentration (a– f) and particle velocity (g–
Cvm and Cl. Letting the three coefficients be zero and only

maintaining the inertia terms of the two phases, one cannot

get the reasonable solution from BTFM. Therefore, the three

forces are very important. Further researches show that the

most important term is the solid phase pressure and the

variation of the coefficient s greatly influences the thickness

of the transition layer (Fig. 13a). When the coefficient s is

very small (its exact value depends on Cvm and Cl,

generally speaking, when it is less than 0.1¨0.2), the

correct solution does not exist. Cvm and Cl may be zero

(Fig. 13(b) and (c)), but s cannot be zero.

The above results are only of qualitative significance,

because the models used in this study for the virtual mass

force Fvm, the solid phase pressure pp and the viscous

coefficient lp cannot be accurately determined and the

values are chosen at will to some extent.

It is not true that the thickness of transition layer is zero

and there is a jump for every parameter through the

discontinuity surface according to LEM. In fact, the

transition layer has certain thickness and every parameter

transits smoothly (but quickly). However, this layer is very

thin (commonly it is only several millimeters, equivalent to

several times of particle diameter), LEM is approximately
p αp
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l) at different times in a period (s =0.07, Cl =0, Cvm=0.5 in GTFM).
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proper except for the sections near the discontinuity

surfaces.

In order to get reasonable results from GTFM, the

principle for choosing the coefficients s, Cvm and Cl is to

insure the eigenvalues be real numbers firstly, then to let

them be as small as possible because the too thick

transitional layer does not fit the result observed in the

experiment.

In conclusion, the errors in the simulation results from

LEM only exist in a time interval of tens of milliseconds

(several times of the particle relaxation time) and a spatial
0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.04

0.08

0.12

0.16

0.20

0.24

(a)    τsys=0.012s αp=0.406 

∆U up

uf

 BTFM
 LEM

ve
lo

ci
ty

 (
 m

 / 
s 

)

t - t0 ( s )

ve
lo

ci
ty

 (
 m

 / 
s 

)

Fig. 12. The relaxation processes of the solid and fl
interval of several millimeters (several times of the particle

diameter) when simulating the pulsed flow in the fluidized

bed. The above limitations of LEM are insignificant for

practical simulation to capture the main characteristics of the

pulsed two-phase flow.
7. Discussions and conclusions
1) It is visually observed that concentration waves and
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distributor as the pattern of a planar wave, resulting

from the periodical variation of fluidizing velocity U(t)

(see Fig. 1), which demonstrates that the pulsating two-

phase flow in the bed is almost one-dimensional. The

good agreement between the numerical results and

experimental data further accounts for the rationality

of the one-dimensional model for the flow studied in

this paper.

2) Although GTFM is a general model, in which various

influencing factors such as the solid phase pressure pp,

the viscous stress sp,xx and the virtual mass force Fvm are

included, researches on the constitutive relationships of

pp, sp,xx and Fvm for closing the model yet are not

satisfying, the expressions used in different references are

distinct from each other. For a given choosing of

constitutive relationships of pp, sp,xx and Fvm, the result

of the flow in pulsed bed can be gotten by numerically

solving GTFM, however, these results imply great

undeterminedness due to the adjustable coefficients in

these constitutive relationships.

3) It is thought that the values of pp, sp,xx and Fvm are small

compared with those of the inter-phase drag force and

gravity force corrected by buoyancy. Many researches

have been based on BTFM, in which the terms of pp,

sp,xx and Fvm are completely neglected. BTFM hardly

has adjustable parameters, thus reducing the undeter-

minedness of the numerical results. However, the

eigenvalues of BTFM contains complex numbers, i.e.,

the model is ill-posed for initial-value problems. The

numerical simulation using this model often fails with

grid refinement because the model is inherently unstable

for small disturbances.

When the amplitude of fluidizing velocity DU is small,

the imaginary part of the eigenvalues is also small, the

numerical viscosity or artificial viscosity can be used to

suppress the instability (see Case A in Figs. 8 and 9).

However, when the amplitude of fluidizing velocity DU

is large, the imaginary part of the eigenvalues becomes

large. It is difficult to suppress the numerical instability
using the numerical viscosity or artificial viscosity (see

Case B in Figs. 10 and 11).

4) Inertial terms are related to the ill-posedness of BTFM.

LEM can be obtained by neglecting the difference of

the inertial forces between the two phases based on

BTFM. From BTFM to LEM, the equation set reduces

into a first order partial differential equation, the two

complex eigenvalue degenerates into a real number, the

difficulty in numerical simulation resulting from the ill-

posedness is thus overcome. LEM contains neither the

undeterminedness due to the adjustable parameters in

GTFM nor the ill-posedness of BTFM. The good

agreement between the numerical results and experi-

mental data shows that LEM has acceptable accuracy as

a whole for studying the flow in liquid pulsed fluidized

bed, and it is also demonstrated that , as a first

approximation, it is reasonable to neglect pp, sp,xx, Fvm

and the difference of the inertial forces between two

phases because they are small as compared with the

inter-phase drag force and the gravity corrected by

buoyancy in most time of the unsteady flow and most

places in the non-uniform flow field.

5) Just as the detailed information in the wall boundary

layer of the single-phase flow is lost when the Navier–

Stokes equation set is simplified into the Euler equation

set, LEM loses the capability to capture some details of

the two-phase flow in pulsed fluidized bed.

The velocities of the two phases get different increments

because of the different inertia when fluidizing velocity

has a jump change. The aftereffect caused by the

different inertia vanishes after a short relaxation process

following the jump change. In LEM, the different

increments for the velocities and the relaxation process

are lost because the difference of the inertial forces is

neglected.

The concentration shock obtained from LEM is a

geometrical surface without any thickness for the same

reason that the difference of the inertial forces is

neglected. In fact, the very large gradients of concen-
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tration and velocities are finite in strength near the

discontinuity surfaces in the flow field, the difference

of the inertial forces is also very important, thus

making the concentration shocks have certain thick-

ness. The flow structure in concentration shock is lost

using LEM.

The relaxation process after the jump change of

fluidizing velocity is very short (only tens of milli-

seconds, i.e., several times of system relaxation time)

and the real thickness of the concentration shocks is

very thin (only several millimeters, i.e., several times of

particle diameter), the above limitations of LEM do not

hinder it from capturing the main characteristics of the

pulsed flow.

6) The model developed and conclusions drawn in this

paper are restricted in the area of liquid pulsed

fluidization. Because of the difference in mechanisms

of inter-particle interactions and the dynamic response

of phases between the gas and liquid fluidization, the

study in this paper just establish a basis for further

studying the gas fluidization, and one should be careful

to extend the model and the resulted conclusions for

liquid fluidization directly to gas fluidization without

capturing all the major mechanism difference and

performing experimental validation. The effects of

inertia difference between gas and solid phases and

particle collisions on the applicability of LEM to gas

fluidization deserve further analysis and experimental

validation.
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Appendix A

In a uniform fluidized bed (fl /flx=0), from Eq. (1), one

can know,

Dap ¼
Z t0þ

t0�

Bap
Bt

dt ¼ 0 and ap
� �

t0þ
¼ ap

� �
t0�

¼ ap:

ðA� 1Þ

Before and after the sudden change of fluidizing velocity,

the continuity equations for the mixture are:

apup;t0� þ 1� ap
� �

uf ;t0� ¼ Ut0� ; ðA� 2Þ

apup;t0þ þ 1� ap
� �

uf ;t0þ ¼ Ut0þ ; ðA� 3Þ
Subtracting Eq. (A-2) from Eq. (A-3), one can get

apDup þ 1� ap
� �

Duf ¼ DU ; ðA� 4Þ

where Du p = u p , t 0 +
�u p , t 0�

, Du f = u f , t 0 +
�u f , t 0�

and

DU=Ut0+
�Ut0�

.

Using Eq. (8), Eq. (3V) in the uniform fluidized can be

expressed as,

qp þ Cvmqf=af
� � Bup

Bt
� qf � Cvmqf=afð Þ Buf

Bt

¼ qf � qp

� �
g

uf � up

uTan�1
f

� 1

��
: ðA� 5Þ

Integrating both sides of Eq. (A-5) from t0� to t0+ yields,

qp þ Cvmqf=af
� �

Dup � qf � Cvmqf=afð ÞDuf

¼
Z t0þ

t0�

qp

Bup

Bt
� qf

Buf

Bt

��
dt

¼
Z t0þ

t0�

qf � qp

� �
g

uf � up

uTan�1
f

� 1

��
dt ¼ 0: ðA� 6Þ

From (A-4) and (A-6), one can get the increments of

solid phase and liquid phase respectively,

Dup
� �

TFM
¼ qf � Cvmqf=afð ÞDU= ap qf � Cvmqf=afð Þ

�
þ af qp þ Cvmqf=af

� ��
; ðA� 7Þ

Dufð ÞTFM ¼ qp þ Cvmqf=af
� �

DU= ap qf � Cvmqf=afð Þ
�

þ af qp þ Cvmqf=af
� ��

: ðA� 8Þ

From Eq. (2V), one can get,

uf ¼ U � apup
� �

= 1� ap
� �

: ðA� 9Þ

Introducing (A-7) into (A-5), one can obtain,

Bup

Bt
¼ U � up

ssys

�
qp � qf

� �
g

qp þ Cvmqf=af þ qf � Cvmqf=afð Þ ap=af
� � ;

ðA� 10Þ
where ssys is the relaxation time of the mixture system,

ssys ¼
uTanf

qp � qf

� �
g

qp þ Cvmqf=af
� �

þ ap=af
� ��

	 qf � Cvmqf=afð ÞÞ: ðA� 11Þ

Solving (A-10) yields,

up tð Þ ¼ U t0þð Þ � uTa
n
f


 �
1� exp � t � t0þð Þ=ssys

� �
 �
þ up t0þð Þexp � t � t0þð Þ=ssys

� �
:

ðA� 12Þ
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Letting Cvm=0, Eqs. (A-7), (A-8) and (A-11) degenerate

into the equations used in the Subsection 6.1.
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