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A B S T R A C T :  The strain gradient effect becomes significant when the size of frac- 
ture process zone around a crack tip is comparable to the intrinsic material length l, 
typically of the order of microns. Using the new strain gradient deformation theory 
given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic 
material with strain gradient effects are investigated. It is established that the dom- 
inant strain field is irrotational. For mode I plane stress crack tip asymptotic field, 
the stress asymptotic field and the couple stress asymptotic field can not exist si- 
multaneously. In the stress dominated asymptotic field, the angular distributions of 
stresses are consistent with the classical plane stress HRR field; In the couple stress 
dominated asymptotic field, the angular distributions of couple stresses are consistent 
with that obtained by Huang et al. For mode II plane stress and plane strain crack 
tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple 
stress asymptotic field is less singular than the stress asymptotic fields. The stress 
asymptotic fields are the same as mode II plane stress and plane strain HRR fields, 
respectively. The increase in stresses is not observed in strain gradient plasticity for 
mode I and mode II, because the present theory is based only on the rotational gradi- 
ent of deformation and the crack tip asymptotic fields are irrotational and dominated 
by the stretching gradient. 

K E Y  W O R D S :  strain gradient effect, crack tip asymptotic field, plane stress, plane 
strain 

1 I N T R O D U C T I O N  

Many experiments have shown that  materials display strong size effects when the char- 

acteristic length scale associated with non-uniform plastic deformation is on the order of 

microns [1~7]. The classical plasticity theories can not predict this size dependence of mate- 

rials behavior at the micron scale because their constitutive models lack an internal length 

scale. 

In order to explain the size effect, it is necessary to develop a continuum theory on 

a micron level. Based on the dislocation analysis, a strain gradient plasticity theory has 

been developed by Fleck and Hutchinson Is], in which a material length scale was introduced 
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from the dimensional grounds. While explaining experimental findings of indentation[ 2,4,9], 
fracture [l~ it has been found necessary to introduce two length parameters [9'11] . One length 
refers to rotational gradients as originally proposed in connection with the torsion measure- 
ments, the other scale is related with the stretching gradients. The latter is needed to 
rationalize the length scale phenomena found in indentation and fracture. In 1998, Nix and 
Gao [12] started from the Taylor relation and gave one kind of hardening law for gradient 
plasticity. Motivated by the indentation hardening law, Gao, Huang et alfl a] proposed a 
mechanism-based theory of strain gradient plasticity. In comparison, no work conjugate of 
strain gradient has been defined in the alternative gradient theories [14'15], which represent 
the strain gradient effects by terms relative with Laplacian of the effective strain. Retaining 
the essential structure of conventional plasticity and obeying thermodynamic restrictions, 
Acharya and Bassani[ 16] conclude that the only possible formulation is a flow theory with 
strain gradient effects represented by an internal variable, which acts to increase the current 
tangent-hardening modulus. In 2000, Chen and Wang[ 17] established a hardening law based 
on the incremental version of conventional J2 deformation theory, in which the effective 
strain gradient is only a parameter to influence the tangent modulus. 

A new strain gradient deformation theory is developed by Chen and Wang in 2001 [ls], 
which fits within the framework of general couple stress theory and involves a single material 
length scale l. In the theory three rotational degrees of freedom wi are introduced in addition 
to the conventional three translational degrees of freedom ui .  wi  has no direct dependence 
upon ui. The strain energy density is assumed to be only a function of the strain tensor 
and the overall curvature tensor, then Cauchy stress becomes symmetric. Using the new 
strain gradient theory, two typical phenomena, i.e., the thin wire torsion and micro-thin 
beam bending have been investigated successfully. 

Though a large strain gradient exists near the crack tip, there is limited progress in 
applying strain gradient plasticity to the estimation of crack tip fields [19~22] . [19] investigated 
mode I crack-tip asymptotic fields in elastic as welt as elastic-plastic materials with strain 
gradient effects. They showed that stresses and couple stresses near a crack tip could not have 
the same order of singularity. The near tip field is either stress dominated (stresses are more 
singular than couple stresses) or couple stresses dominated (couple stresses are more singular 
than stresses). In [20], mode I and mode II plane stress crack tip fields were investigated, 
respectively. [21] presented a finite element study as well as an asymptotic analysis for mode 
I and mode II crack tip fields in strain gradient plasticity. Their asymptotic solution and the 
finite element analysis also confirmed that stresses and couple stresses near a crack tip do 
not have the same order of singularity. All of them show that the stress components increase 
and are different from HRR solution though the crack tip is irrotational. [22] investigated 
mode I plane strain crack tip asymptotic field using the strain gradient theory given by [18] 
and found that the crack tip asymptotic field is irrotational and the stress dominated field 
is the same as HRR solution. 

The aim of the present paper is to investigate the asymptotic fields for mode I and II 
crack in elastic-plastic materials with strain gradient effects, respectively, while using the 
new strain gradient deformation theory of plasticity [ls]. We will start with a summary of 
the new strain gradient plasticity theory in section 2. The near tip asymptotic fields in an 
elastic-plastic material with strain gradient effects are given in section 3. In section 4 and 
section 5, mode I crack tip field and mode II crack tip asymptotic field are investigated, 
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respectively. Discussions are given in section 6. 
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a i j n j  = T ~ on S T  (4) 

m i j n j  = qO on Sq (5) 

The additional boundary conditions are 

0 U i = U i o n  Su (6) 
0 wi = w~ on  S ~  (7)  

The deviatoric part s i j  of Cauchy stress and deviatoric part rn~j of couple stress are 
defined as the work conjugates of e~j, X~j, respectively; am and mm are defined as the work 
conjugates of em and Xm,  respectively. Then the incremental work can be given as 

I I ~W --~ 8 i j ~ j  q- mije~Xi j -~ arne~m + mm~Xm ( 8 )  

where s i j  = a i j  - ( 1 / 3 ) ~ i j a k k  and  m~j  = m i j  - ( 1 / 3 ) 6 i j m k k .  

The above equation enables one to determine s i j ,  rn~j, am and m m  in terms of the 
strain and curvature states of the solid as 

O W  O W  O W  O W  
= am = mm = (9) 8ij OE~j m~j = OX~j O6m OXm 

According to the work by Fleck-Hutchinson Is] and Fleck, et al. [6], it is mathematically 
convenient to assume that  the strain energy density W depends only upon the single scalar 
strain measure Ee ,  where 

E 2 2 2 2 (10) = e e  + l  Xe 

2 T H E  N E W  S T R A I N  G R A D I E N T  D E F O R M A T I O N  T H E O R Y  

A new strain gradient theory has been proposed in [18]. It fits within the framework 
of general couple stress theory[ 23], in which three micro-rotational degrees of freedom wi 

are introduced in addition to the conventional three translational degrees of freedom ui.  wi 

has no direct dependence upon ui ,  which is different from the material rotation vector tgi, 
~9 = (1/2)curlu. 

In the general couple stress theory[ 23] a relative rotation tensor a is defined as 

a i j  = ei jkWk -- (uj , i  -- u i , j ) / 2  = e i jk (Wk -- ~k )  (1) 

The strain energy density W is assumed to depend only upon the strain tensor eij and 
the curvature tensor Xi j ,  Xij ~ ~ i.e. the relative rotation tensor a i j  has no contribution 
to the strain energy density W. It follows that  

T~ = OW/Oaij  = 0 (2) 

where Tij is the anti-symmetrical part of Cauchy stress in the general couple stress theory [23]. 
Then, the equilibrium equations for stress and couple stress in the body are 

ai j , j  = 0 m i j , j  = 0 (3) 

The traction boundary conditions for force and moment are 
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The length scale 1 is a material length scale, and is required on the dimensional grounds. 
An effective stress measure Se is defined as the work conjugate of E~ 

~e = dW(Ee) (11) 
dEe 

then 

where 

2 E e ,  , 2 2 E  e , 1 1 
sij = -ff-'~e,j m,j = 5l -~Xij  am = -~akk mm = "~mkk (12) 

�9 -2 2,1/2 (13) ~:~ = ( ~  +~ m e )  

2 3 3 , , a~ = -~sijsij m2e = ~mijmij 
(14) 

2 2 ~  , 2 ,  , 
Ee = 5 e i j E i j  X 2 = ~ X i j ~ i j  

For the purpose of some specific calculations, the relationship between Se and Ee can 
be chosen. 

3 A S Y M P T O T I C  E Q U A T I O N S  

For a plane problem, the nonzero in-plane stresses and couple stresses in polar co- 
ordinate are ar,., aro(aor), aoo, mzr, mzo. The field equations for the equilibrium in 2D 

are given explicitly in polar coordinates, 
where the polar coordinates (r, 0) are cen- 
tered at the crack tip (Fig.l) 

OUrr 10(TOr tTrr -- (700 

Or + r - - - ~  + r 
Oa~.o 10aoo 2a~.o 
- - + - - - + - - = 0  

Or r O0 r 

-0 

(1~) 

Omzr 1 COmzo mzr 
O---~ + - r - a 0  + r = 0  (16) 

The relations between strains eij and 
displacements ui are 

X 2 

�9 X 1 

Fig.1 Schematic diagram of a crack and 
contour of path-independent of 
J-integral 

Our 10u0 l ( 1 0 u r  Ouo }o)  (17) 
err = Or ~00 = r 0 e  ero = ~or = ~ k r ~ -  + 0--7 ' 

The relations between the micro-rotation vectors wi and curvature tensors Xij are 

0Wz 1 0wz (18) 
x z ~  = O r  x z o  = r O0  

The compatibility equations of strains and curvature tensors are as follows 

02e~ 0e~r ^ 02(re~0) 0 Oeoo 
002 ~ , - ~ r  -- "2. ~ ~- ~rr (f2 ----~-/ = 0 (19) 

OXzr O(rx~o) 0 (20) 
00 Or 



Vol.17, No.3 Chen & Wang: Crack Tip Asymptotic Fields with Strain Gradient 273 

Similar to the strain energy density suggested by [19], for an elastic power law hardening 
material with strain gradient effects, we take the strain energy density as in the following 
form 

n 1 2 1 K . Z  2 W = n~- 1 a~ +12X2)(n+])/2n + 2 g e m  + 2 it X~ (21) 

where n is the hardening exponent, ao a measure of the tensile yield stress, K = E/(3  - 6v) 
the bulk modulus, K1 the bend-torsion bulk modulus, E and v are Young's modulus and 
Poisson's ratio, respectively. 

The constitutive relation can be obtained from (7) and (21) 

3(Se~n-lsi._.j_j § 1 
Cij = 2 \-'~0 ] a 0 "~Orkk(~iJ 

3 ( s, l.-I i 
Xij = 2 \ ao / aol 2 + ~ m k l : S i j  

(22) 

k = r, 8, z (23) 

Following [24,25], the asymptotic stress and couple stress fields near a crack tip can be 
written as 

o,j(r, 8) =   o)(8)rp § 0(rp) 

mz. ( r ,  8) = + O~ = r , 8  

(24) 

(25) 

where the power p and angular functions a~ ~ (8) and m(z~ are to be determined. In the 

following, a~~ (8), m(~ are conveniently written as a(~ , m(z~, respectively. 
Similar to the classical H R R  field [24'25], it has been shown for a power law hardening 

solid that  the path independence of J-integral can be expressed as 

J = f r ( W . 1 -  Tiui ,1-qiwi,1)dS = fu (Wnl - -~ jGj iU i ,1 -n jmj iw i ,1 )dS  (26) 

then, we can obtain 
- 1  

p = - -  (27) 
n §  

The corresponding strains and curvature tensors can be obtained via constitutive re- 
lations (22) and (23) 

= 23at [Z(~ (8)] n - '  s~ ~ (e)r np (28) cij 

3 [,r,(o)(8)]n_lmi~O)(O)rn, (29) Xij -~- 

(o) where sij (8), mri~ ~ (8), Z (~ (8) are angular functions for sij, raij, Ze, respectively. Since 

there are only the shear components of couple stress in the present paper, i.e..~(o) and ~(o) 

(o) (a r, 8) and in the following, the the deviatoric parts of couple stress are denoted as ,,oza, -- 
,(o) z(o)i8 ~ is written as Z (~ 1st order derivative of couple stress is denoted as mza �9 e ~. ] 

3.1 Equilibrium Equations 
Substituting Eqs.(24) and (25) into Eqs.(15) and (16), we obtain the equilibrium equa- 

tions 
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g2) = _(p + l)(r<o) + (r~o) (30) 

,(o) 2)a~O) (31) (rO0 =--(p-t- 

,(o) -(p + l)m (~ (32) 
~ z O  = / z r  

3.2  P l a n e  S t r e s s  C o m p a t i b i l i t y  E q u a t i o n s  
The generalized effective stress 27e for plane stress case can be wri t ten as 

, ~ 2  e 2 -F l - 2 m  2 2 3 2 = (re = (rrr + 32o - (rrr(roo + 3(r2o + ~i~(mzr + m2o) (33) 

When  the effective couple stresses is very small, i.e. l-Zme << (re, 27e becomes the 
same as the  Von Mises stress (r e and the const i tut ive law degenerates  to the  classical J2- 
deformat ion theory. 

Subst i tu t ing  Eqs.(24) and (25) into Eq.(33), we obtain 

, (0),2 (o) (o) (o) 2 ~(o)(0 ) = ((r(o))2 + taoo ) _ art %0 + 3 ( a r o  ) + 

3 (~,(o)~,,(o) (o) (o),11/2 
~-~,,,ozr ,.ozr + mzo mzo )] (34) 

Subs t i tu t ion  of Eqs.(28) and (29) into compatibi l i ty  Eqs.(19) and (20) gives the fol- 
lowing compat ibi l i ty  equat ions 

( n -  1)(n - 2)(23 (~ - , - (~176 2 ( n -  1)27(~ (~ ~eo J~e - vO0  ] k ~ e  ] q- J e x r r  - -  ~(O)I'~ ~'~(O)I"I- 

(s(o))2. (2o<o),, _(o),,, - Ooo ) + (n - l~Z'(~ ( ~  e , ,'," - voo'~(~ r:(~ - 

6(rip + 1)[(n - l'l~'(~176176 + ( 27(~ (~ 
,, e ~ r O  x e / rO J - -  

nn(.~(o)~2(2a(o) _ ,~(o)~ + np(np + 1)(Z'e ~(~ t %o(~ _ a(o)) = 0 (35) 
z:x e J x r r  ~ 0 0  ] r r  ] 

(n - l~m ( ~  z~ E(~ + 27(~176 zr - (1 + nv~S(~ ( ~  e zo = 0 (36) 

where 

~v(o)' 1 [ 2 - ~ e  (~ (2(r(o) _ g o ) , : ) , +  (2(r~o) .~<o),.:)' ~ <o) (o),_ 
= O0 ] r r  - -  V r r  ]~'O0 -t- O0"rO f i f o  "t- 

3 (~.(o)m(o), ~.(o)~.(o)'~] (37) ~**:~r"-z~ +"~176 Jj 

2(o),, = . 1 r2a(o)a(o), 9,.(o),.(o)' _ (r(O)a(O), _ a(O)a(O)' . (o) (o)'_ 
4(~(0))3 L r r  r r  - I - ~ ' O O V O 0  OO r r  r r  O0 +~ 

3[m(O)m(O)' (o) (o)','12 1 f , . ,  (o)',2 . ,  (o) '~2. 
-~, zr zr + m z o m z o  )J + 2---~eo)+l.zL(rrr ) +ztaoO ) -r 

2 g o ) _  (r~o))o(2),, + (2(r~o) .<o),~<o)" ~ ( o ) , : ) '  o, (o)',2_ 
r r  - -  V r r  1 ~ 0 0  - -  ~ . V r r  vO0  "~- O((rrO ) "1- 

(0) (o)" 3 r, (o)',2 .a- ~(~176 ,__(o)'~2 (o) (o)'q'l 
(rroa~o + ~ t t m z ,  ) - - " ' z r " ' z r  +("'%0 J + m z o m z o  Jj* (38) 
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P l a n e  S t r a i n  C o m p a t i b i l i t y  E q u a t i o n s  
The generalized effective stress ,Ue for plane strain case can be written as 

_ (o) 2 3 {m(O)m(O) (o) (o),) z/2 
z ( o ) ( 0 ) = {  [3(a(0)14" rr ~oo=(~ ] + 2 1 2 ,  zr z; + m z e m z O ) ~ .  (39) 

Substituting Eqs.(28) and (29) into the compatibility Eqs.(19) and (20) and combining 
them with Eq (39), we obtain 

_ _ ( o ) ' ~  r , ( o ) ' ~ _  
( n -  1 ) ( n -  2)(ar(~ ) - a(~176 J ~ + 2 ( n -  l~E(~ ( ~  e , ~ Ooo J ~  -- 

�9 _ .~(o)'~ _ 
( E ( ~  2 (a(0r)" ~00 ' + (n 1~(~176 e , rr -- a(0)~(0)'--00 ' e 

4 ( r i p +  1)[(n-- 1~(o),~(o)~(o)' (,u(o)~2a(O)tl 

~p(np  + 2)(~(~176 - ~(o)~ = o 
~OO ] 

zr ~ - n-~E(~ (~ = 0 ( n -  1)m(~176 Z ( ~  (~ ( 1 +  ._, e zO 

Z(0) '  _ 

~,(0)" _ 

1 [3_(a(O) (o),, (o)' . ( o ) ' ~ _ ~  (o) (o)'_ 
2Z(~ [2" ~* - a ~ 1 7 6  )(ar~ - ~ ' o o  J t ~  a~o + 

3 (m(O)m(O)l ~ ~(o)~(o)'~] 
l -~  zr zr " " ' z O " ~ z O  ]J 

1 [3(a(o ) ~(o)~{,,(o)' .(o)'~ ~ (o) (o)'_ 
4(z(o))3 L2" ~ - ~oo Jw**  - voo J + ~ a~o * 

3( ,~ (o) ,~ (o ) '_  (o) (o)'~] 2 1 3 , ~ , f  _(=(o) _(o)'~2• 
1 2 V . . z r . . . z r  ~ m z o m z e  )j + 2,u(o) t 2 ~ r r  - o o e  j T 

where 

(40) 

(41) 

(42) 

3 (a (o) "o" "o'" ~( )~{,,t J _(o)"~ ~, (o)'~2 ~ (o) (o) + 
2 ~ rr  - -~ ' 00  / k ~ r r  - - ~  } 'Jc-D(arO ) "{-D~rrO ffrO 

3 [(m(o),~ * m(O)m(O)- + ,  (o)',2 m(O)m(O)"l ) 
- -  t m ~ o )  + ~.  z0 J ]  (43)  12 LX" ' z r  ] - -  z r  z r  

The asymptotic equations for the plane stress crack tip field are Eqs.(30)~(32) and 
Eqs.(35),(36). The asymptotic equations for the plane strain crack tip field are Eqs. (30)~(32) 
and Eqs.(40),(41). 

From above, we can find that the stresses and the couple stresses are coupled together 
through Ze (~ in the asymptotic equations. 

4 S O L U T I O N S  T O  M O D E  I P L A N E  S T R E S S  A S Y M P T O T I C  F I E L D S  

The traction free conditions on the crack faces are 

o~)  ( •  _- ~ o ) ( •  = m ~  (•  _- 0 (44) 

The symmetric condition for mode I crack tip field gives 

~~ = m(2(o) = o (45) 
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and due to the symmetric conditions, at 0 = 0, we have 

2001 

a(~ = 0 a~)'(O) = 0 (46) 

At 0 = 0, substituting Eqs.(45), (46) into (37), we obtain 

,U~~ at 0 = 0  (47) 

Substituting Eq.(47) into (36), the following condition is obtained 

m!~ = (1 + nv)m~~ (4s) 

The values of ,.rr"(~ v00"~(~ m~O) at 0 = 0 are unknown. Shooting method should be 
used to solve Eqs.(30),-.(32) and Eqs.(35), (36). The unknown initial values need to be 
guessed to meet the crack tip face traction free conditions in Eq.(44). Since all governing 
equations and boundary conditions are homogeneous, we impose the normalization condition 

~/ (0)2 + 1-2m~~ = ao ll/(n+l), where ao 11/("+1) appears only to balance the /T(O) 2 
O'rr -[- ~" 00 

dimension. This normalization condition can be written as 

/ -1~(o)  I ,.,(o) I ,.,(o) 
" ~  I0=0 v r r  Io=o ~00 [0=0 aoll/(n+l) = COSr -- sin~bcosr aoP/(n+l) aoll/(,+l) = s i n C s i n r  

(49) 

For each given r and r the Runge-Kutta method is used to integrate from 0 = 0 to 
the crack face 0 = Ir with initial conditions given. When the numerically calculated angular 
distributions of stresses and couple stresses meet the traction-free conditions Eq.(44), a near 
tip asymptotic field is obtained. The success in choosing two parameters r and r to meet 
three boundary conditions in (44) simultaneously indicates that  the power of stress and 
couple stress singularity in Eq.(27) is correct. 

The entire range of r and r is discretized into 90 x 360 grids, i.e., one degree per 
increment for r and r The above mentioned shooting method is applied over all grid 
points. Two solutions are obtained for mode I, giving r = 7r/2 and ~b = 0, respectively. One 
solution corresponds to a stress-dominated near tip field (r = 7r/2, couple stresses vanishing 
and the stress dominated field is the same as HRR field), while the other gives a couple 
stress dominated near tip field (r = 0, stresses vanishing and the couple stress dominated 
field is the same as that  obtained in [19] for mode I crack tip field). The combined measure 
of effective stress Ee becomes the same as the Von Mises stress ae and effective couple 
stress mr,  respectively. However, the stress field and the couple stress field can not exist 
simultaneously near a crack tip in a material with the hardening law. 

The angular distributions of normalized stress and couple stress are shown in Fig.2 and 
Fig.3 for the hardening exponent n = 10. It is observed for the stress dominated field, the 
stresses are consistent with the conventional HRR field, but different from the corresponding 
counterparts in [19]. The couple stress dominated field is the same as that  in [19] for mode 
I crack tip field. 
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Fig.2 The angular distributions of the normalized stresses for mode I plane stress case 
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Fig.3 The angular distributions of the normalized couple stresses for mode I plane stress case 

5 S O L U T I O N S  T O  M O D E  II  A S Y M P T O T I C  F I E L D S  

5.1 P l a n e  S t r e s s  Case  
For mode II crack tip field, the traction free conditions are the same as Eq.(44). The 

anti-symmetric conditions at 0 = 0 are 

o (o ) (o )  = ~ ) ( o )  = m ~ ) ( 0 )  = o m~~ = o (50)  

"~(~ a~~ and m(~ are unknown. The shooting method is also used to Only ~ , r r  ~ , j ,  

solve the ordinary differential equations (30)~(32) and (35), (36). Without  losing generality, 

the overall effective stress at O = 0 can be assumed to be 1 

3 (~Tj.(0)~21 1 / 2  
E(~ : [3(a(~ 2 + ~ , - - - = r ,  j e=o = 1 (51) 

then at # = 0, we can write 

V~l sin ~a cos ~ ra (~ (0) = 0 < ~ < 2~r (52) ~ ) ( o )  - v ~  zr ~ - - 
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The shooting method is used to search 93 and a(~ in order to satisfy the traction 
free condition (44) on the crack face. Only one solution is obtained for mode II plane stress 
case. The solution corresponds to 93 = 0 and gives a stress-dominated near tip field (couple 
stresses vanishing), i.e. 

(o) -1/(n+l) 
c r i j  --~ Aaij (O)r m z v  e = 0 ( r  -1/(n%1)) ((2 = r,  0) (53) 

This agrees with the plane-strain analysis in [19] that  couple stresses in mode II are less 

singular than stresses. Therefore, the combined measure of effective stress Ze degenerates 

to the Von Mises a~ and the stress asymptotic field near the crack tip is the same as HRR 
solution. The corresponding angular distributions of stress components for mode II plane 

stress are shown in Fig.4 with the hardening exponent n = 10. Neither the normal stress 

nor the shear stress increases, which indicates that  the rotational strain gradients hardly 
have any effect on the plane stress crack tip fields. The crack tip field is irrotational, which 
is the same conclusion as obtained by [19]. 

1.0 ~ 

0.8 

o 0.6 r r 
0.4 

-a 0.2 

0.0 
o -0.2 

-0.4 

- 0 . 6  

n =10 

0.0 0:5 1:0 1:5 2:0 2:5 3:0 3.'5 
0 

Fig.4 The angular distributions of the normalized stresses for mode II plane stress case 

5.2 P l a n e  S tra in  C a s e  
For the plane strain case of mode II crack tip asymptotic field, the traction free con- 

ditions are the same as Eq.(44) and the initial values at 0 = 0 are the same as Eq.(50) and 

the others are as follows 

m!~ = 0 = - ( p  + ~ = - ( p +  1)m(22(0) (54) 

= 0 (55) 

The shooting method is also used to solve the ordinary differential equations (30)~(32) 
(o) and (40), (41). Without  losing generality, at 0 - 0, we assume 2~ (0) -- ao/1/(n+l) then 

Or( O ) I--I ~,~ ( 0 ) 
rO 0=0 COS~ �9 , , o z r  0--0 ~ �9 

aolt/(n+ D = vf ~ aoP/(n+l ) - ~  sin93 0 ~_ 93 < 271" (56) 

Now we can adjust the value of 93 and a l r (0  ) to meet the boundary conditions at O = 7r. 
Also only one solution is obtained for mode II plane strain case, correspOnding to 93 = 0 and 
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this solution gives a stress-dominated near tip field (couple stresses vanishing). Furthermore 
the stress asymptotic field is the same as the classical mode II plane strain HRR solution. 

The corresponding angular distributions of stress components for plane strain mode H 
asymptotic field are shown in Fig.5 with the hardening exponent n = 10. 

1.2 

0.8 ~ - ~  \ 

0.4" . arO 

0"0 ~ mode II 
Q 
._. 
~ -0 .4  

-0 .8  ~7oo ~ 

-1.2 
0.0 0'.5 110 " 1'.5 210 215 310 3~.5 

0 
Fig.5 The angular distributions of the normalized stresses for mode II plane strain case 

6 D I S C U S S I O N S  

The near tip field for a power law hardening material with strain gradient effects con- 
sists of a stress field and a couple stress field. For mode I crack tip asymptotic field, the stress 
asymptotic field and the couple stress asymptotic field can not exist simultaneously. While 
the stress asymptotic field is dominated, it is consistent with the conventional HRR field. 
While the couple stress asymptotic field is dominated, it is consistent with the counterpart 
obtained in [19]. For both plane stress and plane strain mode II crack tip asymptotic field, 
the stress asymptotic field is dominated and consistent with the conventional plane stress 
and plane strain mode II HRR field, respectively. The couple stress asymptotic field is less 
singular than the stress asymptotic field. 

The near tip stress asymptotic field of mode I and mode II obtained by means of 
the new strain gradient deformation theory is different from that obtained in [19] since the 
stress dominated asymptotic field (the couple asymptotic stress is less singular and hardly 
has contribution to the strain energy) obtained in [19] is different from the conventional 

HRR stress field. 
Due to stress singularity, large strain gradients exist near the tip of a crack. We want to 

find the increase of stress components near the crack tip through analysis. Now, the increase, 
however, is not observed. There are two reasons: (1) the  strain gradient plasticity theory 
used in the present study is based only on the rotational gradient of the deformation and 
the stretching gradient is not included in the present deformation theory, but the stretching 
gradient is dominated near the crack tip. (2) The stress asymptotic field can not exist 
simultaneously with the couple stress asymptotic field and the near-tip field is irrotational, 
thus the rotational strain gradient has hardly any influence on the stress asymptotic field. 

Further work will be done using the new strain gradient deformation theory, in which 
the stretching gradient effect is considered. 
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