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ABSTRACT: Large strain finite element method is employed to investigate the 
effect of straining mode on void growth. Axisymmetric cell model embedded with 
spherical void is controlled by constant triaxiality loading, while plane-stress model 
containing a circular void is loaded by constant ratio of straining. Elastic-plastic 
material is used for the matrix in both cases. It is concluded that, besides the known 
effect of triaxiality, the straining mode which intensifies the plastic concentration 
around the void is also a void growth stimulator. Experimental results are cited to 
justify the computation results. 
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1 I N T R O D U C T I O N  

The void growth in dual-phase steel sheets loaded by three paths of straining was tested 
by Zhang et alfl]. Their results indicated that it was the plane-strain loading mode that 
yielded the fastest void growth, though its triaxiality and equivalent plastic strain were both 
lower than those of biaxial tension. This, however, can not be explained by the well-known 
models [2,3], so we intend to question, besides the effect of triaxiality and plastic strain, 
whether there is any other factor that stimulates the void growth? 

Since the void growth is necessarily to be accompanied by large plastic strains around 
the void, the loading condition that can accelerate the plastic concentration in the matrix 
is well studied in this paper by using large strain finite element analysis. Two dimensional 
elastic-plastic cell models (axisymmetric and plane stress) are adopted. It is suggested that 
the nil state of the third invariant of generalized strain rate favors most the void growth. 
The results explain the experimental phenomenon of Zhang et alfl] very well and agree well 
with the computations of other authors. 

2 CELL MODELS AND C O M P U T A T I O N  A P P R O A C H E S  

Matrix material containing periodically distributed voids can be modeled by consid- 
ering a unit cell embedding single void. In Fig.1 a quadrant of this model is shown for 
analyzing axisymmetric (r, z) and plane stress (x, y) cases. The radius of the initial void is 
noted as Ro, the half length along the main directions of the unit cell being initially equal 
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Fig.1 A quadrant of cell model and its finite element mesh 

and normalized as a unit. The shape of the void is spherical in the case of axisymmetric 
cell, but circular throughout the thickness when plane stress model is employed. 

Proportional straining is enforced on the cell whose boundaries are free from shear 
stress but kept straight to ensure continuity, hence the interactions between the voids are 
taken into account. During an incremental displacement loading, it is supposed that 

dUr dWz 
L---~- - a L---Z (i.e. dEr= adEz) (1) 

for the axisymmetric model, where Lr and Ur are respectively the current radius and the 
radial displacement, both normalized by the initial Cell radius. Correspondingly, Lz and Wz 
are assigned as those parameters along the axial direction; and a is a proportional straining 
parameter. Similarly, we use 

dU= dV~ (i.e. d g , =  adgy) (2) 
L= - a L~ 

for the plane stress model associated with similar sense in the nominations of the parameters 
L=, Ux, Ly and V v. Here and hereafter the bar over the symbols represents the overall 
response of the cell so as to distinguish it from the local stress or strain. 

It is assumed that the matrix material follows the  incremental model of Prandtl-Reuss 
in plasticity with the plastic tangent modulus E~e p) obeying the power law. We take 

E 

where E, ee and ~y are respectively Young's modulus, the equivalent strain and the yield 
strain(taken as ~y = 0.002), and n represents the exponent parameter in strain-hardening 
materials (given as n = 0.05, 0.10 and 0.20). 

The method of computation is obtained with the use of the updated Lagrangian for- 
mulation for elastic-plastic large strain analysis, the theory of which has been explained in 
details in a previous paper [4]. The number of the incremental steps needed to complete 



128 ACTA MECHANICA SINICA (English Series) 1999 

each calculation varies from 500 to 3000, depending on the ductility of the sample. The 
elongation along the main loading axis is selected as the generalized time t. 

The quadrant in Fig.1 is subdivided into 224 quadrilaterals with 4 crossed triangular 
elements within each of it, totaling 896 constant strain triangular elements. Computations 
with a much finer mesh of 1680 (420• elements have been employed to check the accuracy 
of the results and for the case when the instability of void growth is concerned. The dif- 
ferences of the �9 meshes are limited within 1% with regard to the macroscopic responses 
and the void growth. 

3 VOID G R O W T H  IN A X I S Y M M E T R I C  CELL M O D E L  

During proportional straining at the boundaries of an axisymmetric cell model embed- 
ding a spherical void, the overall principal true strain gr and gz can be calculated by the 
following relationships 

gz = In(1 + Wz) gr = ln(1 + Ur) = c~gz (4) 

From these we have the overall equivalent strain ge 

�9 2 

~e = ~(ez  -- er )  (5) 

The overall equivalent stress ~e and mean stress ~m can be related to the average axial 
stress ~z and the average radial stress #r along the boundaries of the cell model as 

Oo = - a r l  a m  - -  - - - - - i f - - -  (6 )  

The initial void volume fraction is/v0 = 0.225%, i.e. Ro = 0.15. To demonstrate the 
driving effects of the triaxiality T(= #m/~e) and the large plastic strains around the void on 
the growth of void, two typical samples of a = -0.5 and 1 are calculated with the exponent 
parameter n being 0.2. The contours of local equivalent stress are shown in Fig.2(a,b), 
when the maximum strain of a certain element within the cell reaches ~e = 1.0. The strain 
distributions along the radial axis and the central axis are also depicted along the borders 
of the quadrant. In the case of c~ = 1, the overall equivalent strain keeps to be zero, while 
extremely high is the triaxiality T(= 25.98), plastic area covers the void as a spherical layer 
leaving large zone of elasticity in the outer region of the matrix, the ratio of the current 
void fraction to the initial one fv/fv0 = 4.28. While in the other typical case of a = -0.5, 
large plastic strain (ge = 0.44) is yielded with almost no void growth, that is fv/fvo ~ O, as 
the triaxiality keeps to be zero, although the internal matrix is covered thoroughly by large 
plastic strains. It is concluded that the triaxiality is the driving force of void growth: no 
triaxiality, no void growth; on the other hand, the large plastic strain around the void is the 
necessary environmental condition for driving void growth. 

To demonstrate the effect of straining mode on the void growth, the constant T mod- 
eling is investigated similar to those used by Koplik & Needleman[ 5] and Brocks et al.[s]. 
As has been shown by Brocks[ 8], the calculation is strongly influenced by the finite ele- 
ment formulations under the lower triaxiality condition (T = 1), we therefore only choose 
T = 2 and 3. Since the material in the matrix of the cell is expected to undergo larger plastic 
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Fig.2 The contours of constant local strain 6e (with 0.I grading) in the axisymmetric 
cells (n = 0.20), when (ee)max = 1 

strains, we have to use finer mesh for the computations (i.e. 1680 constant strain triangular 

elements) to avoid deterioration that  would be caused by those extremely distorted elements 

during numerical calculations, and to extend our calculations to the point where void growth 
instability takes place. 

In order to keep loading triaxiality constant, the proportional parameter  a is self- 

adjusted in such a manner as shown in Fig.3(a) for n = 0.2. When a is positive, it shows 

that  the lateral boundary of the cell is expanding; while in negative case, it shrinks. In 
Fig.3(b) is shown the variation of the void fraction Iv with respect to the overall equivalent 
strain ~e. At stage of c~ = 0 (marked as solid circle in the figures), the void growth abruptly 
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speeds up, hence the instability occurs. The corresponding distributions of local equivalent 
strains at this point (T = 2, ge = 0.260; T = 3, ge = 0.114) are given in Fig.4, when 
large strain concentration occurs around the void, strain localizes in the ligament between 
neighboring voids. The critical void volume fractions fvc, when c~ approaches zero, are 
similar to those given by Koplik & Needleman [5]. The value of fvc of T = 2 is lower t h a n  
that  of T = 3. 
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Fig.4 The contours of constant local strain ee in the axisymmetric cells (n = 0.20) 
loaded by constant triaxiality T = 2 (ge = 0.260) and T -- 3 (ge = 0.114) at the 
instability of void growth 

Since the triaxiality is kept constant, and the overall equivalent strain varies slightly 
under the critical state, there must exist another loading parameter that  induces the abrupt 
growth of the void. The solution is to make use of the expression for the generalized strain 
rate, that  is 

~1~2~3 = 0  (7) 

Where 1, 2 and 3 are referring to the three main axes of strain rate in continuum. Equation 
(7) implies that  if any main strain rate turns to zero (except the meaningless case of having 
three of them equal to zero), it would be a dangerous condition of inducing rapid void 
growth. We may refer to this criterion as the vanishing condition of the third invariant of 
generalized strain rate (the rate is counted on the change with respect to the generalized 
time). We will see in the next section that  criterion (7) can also be applied to plane stress 
modeling of void growth. 

4 V O I D  G R O W T H  I N  P L A N E  S T R E S S  C E L L  M O D E L  

In the case of plane stress cell model, the normal mesh (896 constant strain triangular 
elements) is adopted with all the computations terminated at the point when maximum local 

�9 strain ee = I is reached locally in the matrix. The overall equivalent strain in its integration 
form is 

ee = dee (8a) 
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and 

dg~ = Tx/2[ (d~= - dey)2 + (dg~ -dgz)2  + (dg~ - dg=)2] a/2 (8b) 

In Eqs.(8), dg= and dgy are the incremental loading strains given by Eq.(2), d ~  is the 
incremental strain compressed along the thickness and counted as an average over the whole 
areal plane o f  t he  matrix. The overall equivalent stress ae and the mean stress am can be 
calculated by using 

ae = ( a  2 --  a z a y  -I- a2) 1/2 am = a :  -t- all (9) 
3 

where a~ and a u are the average stresses along the boundary sections. 
To check the validity of this two dimensional plane stress model, we calculated the 

pure shear condition (a  = -1) .  The distributions of the local equivalent strain in the cell 
are very similar to those given by Horn & McMeeking[ 7] at the middle cross section of their 
three dimensional cell model. Under the shearing condition, void radius also enlarges along 
the axis of tension and shrinks along the axis of compression with negligible void volumetric 
change. 

In Fig.5(a) are shown the relationship between the void volume fraction fv and the 
overall equivalent strain ge for a = 1,0 and -0.45 with the strain hardening exponent 
n = 0.05, 0.10 and 0.20. The corresponding conditions of the triaxiality T -- am/ae are 
given in Fig.5(b). It is found that  it is under the plane strain mode of loading (a = 0) 
that  the void grows the fastest, even faster than the biaxial ease (a = 1.0), although its 
triaxiality level, and also its overall equivalent strain, are lower. Another important feature 
is that  the void grows faster if the matrix is softer (smaller n) even if the triaxiality is lower. 
To explain this paradoxical phenomenon, let us define a strain concentration factor as 

Cs = (~e)max/~e (10) 
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which is the ratio between the maximum value of the local equivalent strain ~e in the matrix 
and the overall equivalent strain ge loaded on the cell. Table 1 gives a list of the values 
of the strain concentration factor ~8 when all the calculations stops at the same maximum 
local strain ee = 1. In all  cases, the straining condition of a = 0 yields the largest value o f  
e, and the softer the matrix (smaller n), the larger the value of strain concentration factor. 
As can be seen f rom Fig.5(b), the difference of triaxiality between the two cases of c~ -- 0 
and a = 1 is not large, it should then be the influence of large plastic flow around the void 
that  becomes overwhelming. Hence straining mode (a = 0) comes into effect through its 
influence on the internal strain distribution around the void. 

T~ble 1 S t r a i n  c o n c e n t r a t i o n  factor es when local equivalent s t ra in  ee = 1 

n 

c~ 0.05 0.1 0.2 

-0.45 16.92 13.17 8.32 
0 23.87 19.46 11.26 

1 9.86 7.43 4.96 

Concentration of large plastic strain not only plays the role as an adjoint factor of 
voiding but also acts as the stimulator of its growth, since large equivalent strain lowers 
down the plastic stiffness around the void, as is seen from Eq.(3). The concentration of 
large strains around the void further influences the distribution of strain energy within the 
matrix material. Assume an inner layer as A around the void with its exterior radius as 
2Ro, the remaining part of the matrix as B, we have the strain energy ratio of the inner 
part A a s  

* / ; L  P,e = f f ai, D,idsdt a,iDiidsdt (11) 
dO J A  JO +B 

f 
where aij is the true stress within the matrix, o -0.45 

1V~ a o  0.0 
Di.~ = 5( ~,~ + ~ , i )  is the deformation rate , 1.0 

comprised of the velocity Vi, s is the area of 0.5 - -  0.05 
the matrix. The variations of Pse with ge are n -  - 0.10 

depicted in Fig.6 for the three loading con- ~80.50 
ditions ( a = 1,0,-0.45).  It is indicated that  
the case of plane strain loading ( a = 0) has 
the largest proportion of strain energy for its 0.45 
inner area. Also, the softer the matrix (lower 
value of n), the higher is the proportion of 
Pse. 0 .40  , 1.0 1:2 1.6 ,:s 

These examples demonstrate that  the 
overall straining mode, characterized by cri- fv/fvo 
terion (7), influences not only the local strain Fig.6 The variation of the strain energy ra- 
concentration around the void but also the tio p,e with respect to the void growth 
distribution of strain energy within the ma- parameter Sv/.fvo (the exterior radius 
trix. More energy is stored/dissipated in the of region A is 2Ro) 

adjoining area of the void when the criterion is reached, thus incurring much faster void 
growth. The hardness of the matrix material (characterized by the parameter n) would also 
exert an influence on the assignment of this proportion. 
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In comparison with the tests done by Zhang et al. [1], we can now explain the phe- 
nomenon which can not be explained by the other models [2'3]. 

Based on a simple form of the deformation type of plastic equations for continuum, 
that  is 

~,j = ~S,j  (12) 

where ~ = 3ge/2#e, the triaxiality parameter under constant strain ratio (a = e2/~1) 
loading can be calculated by the formula 

1 + a (13) 
T = = v (1 + + a2)1/2 

In their experiments for dual-phase steel sheets, Zhang et alfl] had T = 0.666 for the 
biaxial stretching (c~ = 0.87), 0.592 for the plane strain loading (a = 0.055) and 0.366 for 
the uniaxial tension (a = -0.45). In our computations, we then have T = 0.667 (c~ = 
1),0.577 (a = 0) and 0.366 (a = -0.45), which are in good agreement with the maximum 
values of the triaxiality results given in Fig.5(b) for all the cases. 

It was found that  the plane strain loading yielded larger void size along both the 
rolling direction and the thickness direction than those of the biaxial stretching, though its 
triaxiality is less than that  of the latter case. Since it was the average void size, not the 
void areal fraction, that  they measured, thus they excluded the influence of void nucleation. 
This trend is reproduced in our simulations, as is shown in Fig.5(a), it is the plane strain 
loading that  incurs the fastest void growth. 

5 C O N C L U S I O N S  

The main conclusions of this paper can be given as follows: 
(1) Void must be surrounded by large plastic strains so as to move its boundary. Therefore, 

besides the effect of triaxiaiity, the straining mode that  facilitates the strain concentration 
around the void is also a stimulator of the void growth. 

(2) The straining mode characterized as the vanishing state of the third invariant of gener- 
alized strain rate is the most deteriorating case. 

(3) The straining mode comes into effect through concentrating the strains around the void, 
enhancing the strain energy stored/dissipated in the adjoining layer, and reducing the 
plastic stiffness of the matrix material near to the void. 
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