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Abstract

Using dimensional analysis and finite element calculations, we derive simple scaling relationships for loading and unloading
curve, contact depth, and hardness. The relationship between hardness and the basic mechanical properties of solids, such as
Young’s modulus, initial yield strength, and work-hardening exponent, is then obtained. The conditions for ‘piling-up’ and
‘sinking-in’ of surface profiles during indentation are determined. A method for estimating contact depth from initial unloading
slope is examined. The work done during indentation is also studied. A relationship between the ratio of hardness to elastic
modulus and the ratio of irreversible work to total work is discovered. This relationship offers a new method for obtaining
hardness and elastic modulus. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is
developed. A connection between creep and ‘indentation size effect’ is established. © 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

For nearly 100 years, indentation experiments have
been performed to obtain the hardness of materials [1].
Recent years have seen significant improvements in
indentation equipment and a growing need to measure
the mechanical properties of materials on small scales.
It is now possible to monitor, with high precision and
accuracy, both the load and displacement of an inden-
ter during indentation experiments [2-4]. However,
questions remain, including what properties can be
measured using instrumented indentation techniques
and what is hardness?

Many authors have addressed these basic questions
[5-18]. Rather than an exhaustive literature review,
this paper summarizes our recent results [19-27], ob-
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tained using a scaling approach to indentation model-
ing, that may be useful to the interpretation of indenta-
tion hardness measurements.

We consider a three-dimensional, rigid, conical in-
denter of a given half angle, 6, indenting normally into
a homogeneous solid. The friction coefficient at the
contact surface between the indenter and the solid is
assumed zero. The quantities of interest from the load-
ing portion of indentation measurements include the
force (F) and the contact depth (h.) or the projected
contact area (A_; Fig. la), from which the hardness
under load, H = F /A, can be evaluated. In addition to
the complete unloading curve, the initial unloading
slope and final depth (Fig. 1b) are of particular interest
for the unloading portion of indentation measure-
ments. Furthermore, the total and reversible work of
indentation, defined as the respective area under the
loading and unloading curves, have also been studied.
We will first review results of conical indentation into
elastic—plastic solids with work-hardening [20,26], fol-
lowed by a new scaling theory of indentation into
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Fig. 1. Tlustration of conical indentation (a) and loading—unloading
curves (b).

power-law creep solid using self-similar indenters (e.g.
conical and pyramidal indenters) [27].

2. Indentation into elastic—plastic solids
2.1. Dimensional analysis and finite element calculations

The stress—strain (o—¢) curves of the solids under
uniaxial tension are assumed to be given by

(D

where E is the Young’s modulus, Y is the initial yield
stress, K is the strength coefficient, and »n is the
work-hardening exponent [28]. To ensure continuity,
we note K=Y[E/Y]". Consequently, either E, Y and
K or E, Y and n are sufficient to describe the
stress—strain relationship. We use the latter set of
parameters extensively in the following discussions.
When n is zero, Eq. (1) becomes the model for
elastic—perfectly plastic solids. For most metals » has a
value between 0.1 and 0.5 [29].

During loading, F and %, can be written, according
to dimensional analysis [22,25], as

F=Eh2na(§,u,n,e) )
Y
hc=hHB(F,U,n,6) 3)

where II, and Il are dimensionless functions of four
dimensionless parameters Y/E, (Poisson’s ratio), n and
0. Several observations can be made. First, the force on
the indenter, F, is proportional to the square of the
indenter displacement, 4. Second, the contact depth,
h., is proportional to the indenter displacement, .
Consequently, the hardness under load is independent
of indenter displacement, 4, or indenter load, F.

Because unloading takes place after loading during
which the indenter reaches the maximum depth, 4,
the equation for unloading curves is, using dimensional
analysis [22,25],

F=Eh2Hy(%,i,U,n,9) 4

where 11, is a dimensionless function of five parame-
ters, Y/E, h/h,,, v, n and 6. In contrast to loading, Eq.
(4) shows that the force, F, is, in general, no longer
simply proportional to the square of the indenter dis-
placement, 4. It also depends on the ratio, A/h,,,
through the dimensionless function II..

Because there is, as yet, no analytical solution to the
problem of conical indentation in elastic—plastic solids,
finite element calculations using ABAQUS were per-
formed to evaluate the dimensionless functions and
explore their implications [30]. For the present paper,
the results for a rigid indenter of half angle of 68° and
a Poisson’s ratio of 0.3 were summarized. To simplify
notation, M(Y/E,n) (i=«a,B,3) is used instead of
Mm(Y/E,0.3,1,68) (i =«,B,3) in the following discus-
sions. The calculations have since been extended to a
broad range of angles from 35 to 80° [31].

2.2. Results and discussion

2.2.1. Indentation loading curves

The finite element calculations confirm that the force,
F, is indeed proportional to the square of the displace-
ment, &, for conical indenter indenting a homogeneous
solid with or without work-hardening. Furthermore,
finite element results show [22] that a simple, approxi-
mate scaling relationship exists between F/Eh? and
Y*/E (Fig. 2), where Y* =(YK)? which may be
defined as an ‘effective yield strength’. Consequently, it
is possible to estimate the effective yield strength, Y*,
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Fig. 2. An approximate scaling relationship between F/Eh’> and
Y*/E.

from indentation loading curves provided that the
Young’s modulus, E, is known. Conversely, £ may be
obtained if Y* is known.

This square-dependence is characteristic of indenta-
tion, using self-similar indenters, into homogeneous
solids that do not have an intrinsic length scale. Devia-
tions from the square-dependence are expected when
there is an intrinsic length associated with either the
indenter or the solid. In fact, loading curves may be
approximated by second-order polynomials if the in-
dentation depth is on the same order as the tip radius
of actual conical or pyramidal indenters [21]. When
indenting solids that exhibit power-law creep using
self-similar indenters, the loading curves can also be
different from the square dependence [27] (discussed
later in the paper). Consequently, the shape of indenta-
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tion loading curves may be used to detect whether an
intrinsic length scale exists in a material.

2.2.2 Contact depth, sinking-in, piling-up, and a method
of estimating contact depth

The relationship between &, /h and Y /E for several
values of n is shown in Fig. 3a—d [23]. The value of
h./h can be either greater or smaller than one, corre-
sponding to the ‘piling-up’ and ‘sinking-in’ of the dis-
placed surface profiles, respectively. For large Y/E,
sinking-in occurs for all values of n>0. For small
Y/E, both sinking-in and piling-up may occur depend-
ing on the degree of work-hardening. In the case of
severe work-hardening (i.e. n =0.5), sinking-in is ex-
pected even for very small values of Y/E, whereas
piling-up is expected for elastic—perfectly plastic solids
and for solids with a small work-hardening exponent
(e.g. n=0.1).

Sinking-in and piling-up of the surface profiles can
cause difficulties in estimating contact depth or area.
To overcome such difficulties, Oliver and Pharr have
proposed a procedure for estimating contact depth
from initial unloading slope [8],

he=hy,—&F,/(dF/dh), (5)

where F,, and (dF/dh),, are the respective load and
the initial slope of the unloading curve at the indenter
displacement depth, /.. The numerical value of £ is
0.72 for conical indenter, 0.75 for the paraboloid of
revolution, and 1.0 for flat punch.

Applying the Oliver and Pharr procedure to the
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Fig. 3. Relationships between h./h and Y/E for several values of n obtained from finite element calculations and that obtained using the
Oliver—Pharr procedure for: (a) n =0.0; (b) n =0.1; (¢) n =0.3; and (d) n =0.5.
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loading—unloading curves obtained from finite element
calculations, we evaluate the contact depth using Eq.
(5) and plot it in terms of h./h in Fig. 3a—d. It is
apparent from Fig. 3 that the Oliver and Pharr proce-
dure is valid when the ratio of Y/E is large (e.g.
>0.05 for 0.0 <n <0.5). This is expected since this
procedure is based on Sneddon’s analysis of surface
profiles for elastic contacts [32]. For materials with a
wide range of Y/E (e.g. 107%~10"2), such as metals,
the Oliver and Pharr procedure may not be accurate.
For example, the procedure underestimates the contact
area for elastic—perfectly plastic solids over most Y/E
values (Fig. 3a). The error is most significant when
piling-up occurs, ie. A /h>1. In fact, the contact
depth, A, estimated using Eq. (5) is always less than
h,. It should also be noted that Eq. (5) could also
overestimate contact area for materials with a large
work-hardening exponent, e.g. n = 0.5 (Fig. 3d). Thus,
the Oliver—Pharr procedure may be used with confi-
dence for highly elastic materials (e.g. Y/E > 0.05 for
0.0 <n <0.5). For materials with a wide range of Y/E
(e.g. 107%=10"2), however, this procedure should be
used with caution.

2.2.3. Relationship between hardness and mechanical
properties

Using Egs. (2) and (3), the ratio of hardness to initial
yield strength is given by [22]

H Y
7 =H,1(F,U,n,9) (6)

where II, is a dimensionless function. Clearly, the
hardness is independent of the depth of indentation, A.
The ratio H/Y is, in principle, a function of Y/E, v, n,
as well as indenter geometry (0). Taking 6 = 68° and
v = 0.3, for example, the dependence of H/Y on Y/E
and n is illustrated in Fig. 4. It is apparent that, over
the practically relevant range of Y/E, the ratio H/Y is
not a constant. The hardness, H, depends on Y/E and
n. As expected, work-hardening has a greater effect on
the hardness value for small ratio of Y/E. For small
ratios of Y/E, the hardness value can be many times
that of the initial yield strength, Y. For a large ratio of
Y/E, the hardness value approaches 1.7 times the
initial yield strength, Y, and is insensitive to n.

Tabor [1] introduced the concept of ‘representative
yield stress’, Y., and showed that, for conical indenta-
tion in metals, the hardness value is approximately
three times Y, where Y, is the yield stress at a repre-
sentative strain, ¢, of 8—10%. Following Tabor’s idea,
we evaluated H/(Ke?) and noted an approximate scal-
ing relationship between H/(Ke!) and Y/E, if the
value for strain, ¢, is taken to be 10%. In Fig. 5, we
plot H/(0.10"K) against Y/E. All the data points
shown in Fig. 4 lie approximately on a single curve.
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Fig. 4. Relationships between H/Y and Y/E for several values of n.

Thus, the concept of representative strain seems appli-
cable.

It is also evident that H/(Ke!) is a function of Y/E
and is, therefore, not a constant over the wide range of
Y/E (Fig. 5). For Y/E <0.02, H/(Ke!) is approxi-
mately 2.4-2.8 (Fig. 5). For Y/E > 0.06, H/Y is ap-
proximately 1.7-2.8 (Fig. 4), i.e.

H=238Y,, for Y/E—0.0
where Y, is the yield stress at 10% of strain, and

H=1.7Y, for Y/E—0.1.

2.2.4. Relationship between hardness, elastic modulus, and
the work of indentation

The total work done by the indenter, W, ,, to cause
elastic and plastic deformation when the indenter
reaches a maximum depth and the work done by the
solid to the indenter during unloading, W,, have been
examined [24,26]. It was found that a remarkable corre-
lation exists between the ratio of irreversible work to

4.0
°n=0.0
35
go=0.10 o n=0,1
30 °n=0.3
£ o é A —
W ) n=0.5
¥ 25 §2§§ 8
T S0y
20 r 8 o A
8 4
(o]
[+
15
1.0 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1

Y/E

Fig. 5. A relationship between H/(Ke!) and Y/E by assuming
g, = 0.10.
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total work for a complete loading—unloading cycle,
W, — W) /W,,, and the ratio of hardness to elastic
modulus [24]. This correlation is illustrated in Fig. 6,

£ = 7w, @

H ( I/Vtot _ I/Vu )
where E* =E /(1 —v?). The subscript, 6, denotes a
possible dependence on indenter angle, since Eq. (7)
and Fig. 6 were obtained for a particular indenter
angle. Nevertheless, Eq. (7) shows that, for a given
indenter angle, there is an approximate linear relation-
ship between H/E* and (W, —W,)/W,,. Conse-
quently, the value H/E* may be obtained from the
measurement of W, and W, ,, which can be determined
readily by simple numerical integration based on force
and displacement measurements.

The ratio of hardness to elastic modulus, H/E*, is
of significant interest in tribology. This ratio multiplied
by a geometric factor is the ‘plasticity index’ which
describes the deformation properties of rough surfaces
[33]. The correlation provides an alternative method for
measuring H/E* on micro- and nano-meter scale for
both metals and ceramics. Furthermore, both H and
E* may be obtained using the above correlation
together with a well-known relationship between elastic
modulus, contact area, and initial unloading slope
[19,24].

3. Indentation into power-law creep solids

3.1. Dimensional analysis

We consider a three-dimensional, rigid, conical in-
denter indenting normally into a homogeneous solid
with power-law creep [28,29],
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Fig. 6. A relationship between H/E* and (W, — W,)/W,,, includ-
ing data from finite element calculations for conical indenters and
experimental results for a few materials using pyramidal indenters.

where o is stress, £ is strain rate, b and m are material
constants. For an isotropic solid obeying the creep rule
given by Eq. (8), the two variables force, F, and contact
area, A, during loading are functions of all the inde-
pendent governing parameters, b, m, indenter displace-
ment (4), rate of indenter displacement (4), and inden-
ter angle (0). They are also implicitly dependent on
time, ¢, since & and A are dependent on time and

t= f hw dh /h. Dimensional analysis shows that [27]
h

=0
AN
F=b|7| #*TI0n,0) (9)
A, =h*TI5(m.0) (10)

where II and IIg are dimensionless functions of di-
mensionless parameters m and 6. Consequently, the
hardness is

F AN A
=4 -o(%] Hé=(bny)(ﬁ) (1

where 17 =117 /TI;. To simplify notation, IIj =II;
(m,0) for i = a,B,y in the following.

This equation shows that the strain rate dependence
of hardness is contained in the parameter, 4 /h. Com-
paring Eq. (11) with Eq. (8), we observe that, aside
from the pre-factor, the power-law dependence of
hardness, H, on A /h in indentation experiments is the
same as that of stress, o, on strain-rate, &, in uniaxial
creep tests. Thus, the parameter, 4 /h, can indeed be
chosen, aside from a time-independent pre-factor, to
represent indentation strain rate, as has been assumed
by several authors in the past [34—40].

When the force, instead of displacement, is the inde-
pendent variable, Eq. (9) may be integrated to obtain
[27]:

m/2

m/2 "
h(t) = (3) (bng)‘”z[]oFl/m(t)dt} 12)

m

with initial condition 4(0) =0. In the following, the
above equations are applied to several types of fre-
quently encountered indentation experiments in which
either h, F, or F/F is kept constant [34-40].

4. Results and discussion

4.1. Constant displacement rate, h = h,, experiments

When hcis constant, the force and hardness are,
according to Egs. (9) and (11),
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m

Fz(bng)(%) h? (13)

m

- 5) (14)

Thus, the force during loading is proportional to 4>~ "™
and is no longer proportional to /4. The hardness
decreases with indentation depth. The creep exponent,
m, can be obtained from either the indentation loading
curve or from the graph of In(H) vs. In (/i /h).

4.2. Constant loading rate, F = F,, experiments

When F, is constant, it can be shown that the force
and hardness are [27],

h2/(m+1) (15)

X m/(m+1)
F= (ng)l/('"”)[ch i 1]

2

H=(b1'[§)(%) =(bH;)(”’T+1) (%) (16)

Thus, the force during loading is proportional to
h*/(*D_ The hardness decreases with increasing in-
dentation load. The creep exponent, m, can be ob-
tained from either the indentation loading curve, the
graph of In(H) vs. In(//h), or the graph of In(H) vs.
In(F/F).

4.3. Constant loading rate over load, F / F, experiments
Since (F/F) =\ is a constant, the force is given by

F =F,eM, where F, is the force at ¢ = 0. Substituting
into Eq. (12), we obtain a solution:

1

VIS

and for large t > m/\,

h(t) =

m/2
(%) Fl2 e/ m — )™ (17)

1/2

2"F, RYZ (18)

h(t) = (W

Consequently, the indentation strain rate is given by

F

h 1F
2F

7 =

—SA—erm s (19)

| >

Thus, the indentation strain-rate, / /h is half of F /F
after a transient period of the order of m/\. Using
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Fig. 7. Scaling relationships between indenter load and displacement
(a) and between hardness and indenter displacement (b) for constant
loading rate over load cases where the parameter \f,,, = 3.

Egs. (9) and (11), the respective indentation loading
curve and hardness may be written,

)mh2 (20)

| >

F=FyeM= (bn;)(

H- (bng)(%) ~or)( 3 1)

Eqgs. (20) and (21), scaled by their respective values at
h,, are shown in Fig. 7. Clearly, hardness reaches a
steady state value when F/F is kept constant. Corre-
spondingly, the loading force is again proportional to
h?. The hardness increases with (F/F)™. The creep
exponent, m, can be obtained from either the indenta-
tion loading curve, the graph of In(H) vs. In(F/F), or
of In(H) vs. In(h/h).

The results of the above analysis are consistent with
experimental data from the literature. For example,
numerous authors have shown a linear dependence
between In(H) and In(4/h) for all three loading con-
ditions considered above (i.e. either &, F, or F/F is
kept constant) [34-40]. Furthermore, the creep expo-
nent, m, has been obtained from the slope of the
straight lines in the graph of In (H) vs. In (4 /h) [34—40].
The creep exponent, m, has also been obtained from
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indentation loading curves by Grau et al. using either
constant & or F experiments and equations similar to
Egs. (13) and (15) [39].

Several authors have reported an ‘indentation size
effect’ in constant /4 or F experiments as predicted by
the above equations [Egs. (14) and (16)]: hardness
decreases with increasing indentation depth or load
[37,40]. It has also been demonstrated recently by Lu-
cas and Oliver [40] that in constant F/F experiments,
the indentation strain rate reaches a ‘steady state’ and
is given by 0.5F/F in agreement with Eq. (19). Fur-
thermore, these authors showed [40] that the steady
state hardness is independent of indentation depth and
is proportional to (F/F)™ as predicted by Eq. 21).

5. Conclusions

We have derived scaling relationships for loading
and unloading curve, contact depth, and hardness for
indentation in elastic—plastic solids with work-harden-
ing. The square dependence of loading curves is char-
acteristic of indentation in homogenous solids using
self-similar indenters (e.g. conical and pyramidal). For
a given indenter geometry, hardness depends on both
the elastic and plastic properties of materials and is not
necessarily three times the yield strength. The condi-
tions for ‘piling-up’ and ‘sinking-in’ of surface profiles
during indentation were obtained. The Oliver—Pharr
procedure for estimating contact depth may be used
with confidence for highly elastic materials. However,
this procedure may cause significant error when piling-
up occurs. A relationship between the ratio of hardness
to elastic modulus and the ratio of irreversible work to
total work was found. This relationship offers a new
method for obtaining hardness and elastic modulus.
Finally, a scaling theory for indentation in power-law
creep solids using self-similar indenters was developed.
An ‘indentation size effect’ is expected in experiments
using either constant displacement rate or constant
loading rate. In contrast, hardness reaches a steady
state value in experiments using constant loading rate
over load.

These conclusions are the results of the scaling the-
ory based on several clearly specified assumptions, in-
cluding the ones that describe the behavior of materials
[e.g. Egs. (1) and (8)]. In reality, however, materials
behavior may be much more complex. For hard materi-
als, for example, the deformation mechanism responsi-
ble for the hardness impression may include a signifi-
cant fracture component [41] instead of the purely
elastic—plastic behavior given by Eq. (1). Likewise, al-
ternative mechanisms may be responsible for the
observed indentation size effects, including strain-
gradient plasticity [42], imperfection in the indenter
geometry [43], and surface roughness [44]. Neverthe-

less, the conclusions of this study provide a framework
for understanding indentation hardness measurements
for two classes of materials, i.e. elastic—plastic solids
with power-law work-hardening [Eq. (1)] and solids
with power-law creep [Eq. (8)]. These results of this
work may also be used to identify new mechanisms
responsible for deformation in indentation experi-
ments.
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