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What is indentation hardness?
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Abstract

Using dimensional analysis and finite element calculations, we derive simple scaling relationships for loading and unloading
curve, contact depth, and hardness. The relationship between hardness and the basic mechanical properties of solids, such as
Young’s modulus, initial yield strength, and work-hardening exponent, is then obtained. The conditions for ‘piling-up’ and
‘sinking-in’ of surface profiles during indentation are determined. A method for estimating contact depth from initial unloading
slope is examined. The work done during indentation is also studied. A relationship between the ratio of hardness to elastic
modulus and the ratio of irreversible work to total work is discovered. This relationship offers a new method for obtaining
hardness and elastic modulus. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is
developed. A connection between creep and ‘indentation size effect’ is established. Q 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Hardness; Nano-indentation; Creep

1. Introduction

For nearly 100 years, indentation experiments have
w xbeen performed to obtain the hardness of materials 1 .

Recent years have seen significant improvements in
indentation equipment and a growing need to measure
the mechanical properties of materials on small scales.
It is now possible to monitor, with high precision and
accuracy, both the load and displacement of an inden-

w xter during indentation experiments 2]4 . However,
questions remain, including what properties can be
measured using instrumented indentation techniques
and what is hardness?

Many authors have addressed these basic questions
w x5]18 . Rather than an exhaustive literature review,

w xthis paper summarizes our recent results 19]27 , ob-
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tained using a scaling approach to indentation model-
ing, that may be useful to the interpretation of indenta-
tion hardness measurements.

We consider a three-dimensional, rigid, conical in-
denter of a given half angle, u, indenting normally into
a homogeneous solid. The friction coefficient at the
contact surface between the indenter and the solid is
assumed zero. The quantities of interest from the load-
ing portion of indentation measurements include the

Ž . Ž .force F and the contact depth h or the projectedc
Ž .contact area A ; Fig. 1a , from which the hardnessc

under load, HsFrA , can be evaluated. In addition toc
the complete unloading curve, the initial unloading

Ž .slope and final depth Fig. 1b are of particular interest
for the unloading portion of indentation measure-
ments. Furthermore, the total and reversible work of
indentation, defined as the respective area under the
loading and unloading curves, have also been studied.
We will first review results of conical indentation into

w xelastic]plastic solids with work-hardening 20,26 , fol-
lowed by a new scaling theory of indentation into
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Ž .Fig. 1. Illustration of conical indentation a and loading]unloading
Ž .curves b .

Žpower-law creep solid using self-similar indenters e.g.
. w xconical and pyramidal indenters 27 .

2. Indentation into elastic–plastic solids

2.1. Dimensional analysis and finite element calculations

Ž .The stress]strain s]« curves of the solids under
uniaxial tension are assumed to be given by

Y
ssE« for «F ,E Ž .1YnssK« for «G ,E

where E is the Young’s modulus, Y is the initial yield
stress, K is the strength coefficient, and n is the

w xwork-hardening exponent 28 . To ensure continuity,
w xnwe note KsY ErY . Consequently, either E, Y and

K or E, Y and n are sufficient to describe the
stress]strain relationship. We use the latter set of
parameters extensively in the following discussions.

Ž .When n is zero, Eq. 1 becomes the model for
elastic]perfectly plastic solids. For most metals n has a

w xvalue between 0.1 and 0.5 29 .

During loading, F and h can be written, accordingc
w xto dimensional analysis 22,25 , as

Y2 Ž .FsEh P ,¨ ,n ,u 2a ž /E

Y Ž .h shP ,¨ ,n ,u 3c b ž /E

where P and P are dimensionless functions of foura b

Ž .dimensionless parameters YrE, Poisson’s ratio , n and
u. Several observations can be made. First, the force on
the indenter, F, is proportional to the square of the
indenter displacement, h. Second, the contact depth,
h , is proportional to the indenter displacement, h.c
Consequently, the hardness under load is independent
of indenter displacement, h, or indenter load, F.

Because unloading takes place after loading during
which the indenter reaches the maximum depth, h ,m
the equation for unloading curves is, using dimensional

w xanalysis 22,25 ,

Y h2 Ž .FsEh P , ,¨ ,n ,u 4g ž /E hm

where P is a dimensionless function of five parame-g

ters, YrE, hrh , ¨, n and u. In contrast to loading, Eq.m
Ž .4 shows that the force, F, is, in general, no longer
simply proportional to the square of the indenter dis-
placement, h. It also depends on the ratio, hrh ,m
through the dimensionless function P .g

Because there is, as yet, no analytical solution to the
problem of conical indentation in elastic]plastic solids,
finite element calculations using ABAQUS were per-
formed to evaluate the dimensionless functions and

w xexplore their implications 30 . For the present paper,
the results for a rigid indenter of half angle of 688 and
a Poisson’s ratio of 0.3 were summarized. To simplify

Ž . Ž .notation, P YrE,n isa ,b,d is used instead ofi
Ž . Ž .P YrE,0.3,n,688 isa ,b,d in the following discus-i

sions. The calculations have since been extended to a
w xbroad range of angles from 35 to 808 31 .

2.2. Results and discussion

2.2.1. Indentation loading cur̈ es
The finite element calculations confirm that the force,

F, is indeed proportional to the square of the displace-
ment, h, for conical indenter indenting a homogeneous
solid with or without work-hardening. Furthermore,

w xfinite element results show 22 that a simple, approxi-
mate scaling relationship exists between FrEh2 and

U Ž . U Ž .1r2Y rE Fig. 2 , where Y s YK which may be
defined as an ‘effective yield strength’. Consequently, it
is possible to estimate the effective yield strength, Y U ,
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Fig. 2. An approximate scaling relationship between FrEh2 and
Y UrE.

from indentation loading curves provided that the
Young’s modulus, E, is known. Conversely, E may be
obtained if Y U is known.

This square-dependence is characteristic of indenta-
tion, using self-similar indenters, into homogeneous
solids that do not have an intrinsic length scale. Devia-
tions from the square-dependence are expected when
there is an intrinsic length associated with either the
indenter or the solid. In fact, loading curves may be
approximated by second-order polynomials if the in-
dentation depth is on the same order as the tip radius

w xof actual conical or pyramidal indenters 21 . When
indenting solids that exhibit power-law creep using
self-similar indenters, the loading curves can also be

w x Ždifferent from the square dependence 27 discussed
.later in the paper . Consequently, the shape of indenta-

tion loading curves may be used to detect whether an
intrinsic length scale exists in a material.

2.2.2 Contact depth, sinking-in, piling-up, and a method
of estimating contact depth

The relationship between h rh and YrE for severalc
w xvalues of n is shown in Fig. 3a]d 23 . The value of

h rh can be either greater or smaller than one, corre-c
sponding to the ‘piling-up’ and ‘sinking-in’ of the dis-
placed surface profiles, respectively. For large YrE,
sinking-in occurs for all values of n)0. For small
YrE, both sinking-in and piling-up may occur depend-
ing on the degree of work-hardening. In the case of

Ž .severe work-hardening i.e. ns0.5 , sinking-in is ex-
pected even for very small values of YrE, whereas
piling-up is expected for elastic]perfectly plastic solids
and for solids with a small work-hardening exponent
Ž .e.g. ns0.1 .

Sinking-in and piling-up of the surface profiles can
cause difficulties in estimating contact depth or area.
To overcome such difficulties, Oliver and Pharr have
proposed a procedure for estimating contact depth

w xfrom initial unloading slope 8 ,

Ž . Ž .h sh yj F r d Frdh 5mc m m

Ž .where F and d Frdh are the respective load andm m
the initial slope of the unloading curve at the indenter
displacement depth, h . The numerical value of j ism
0.72 for conical indenter, 0.75 for the paraboloid of
revolution, and 1.0 for flat punch.

Applying the Oliver and Pharr procedure to the

Fig. 3. Relationships between h rh and YrE for several values of n obtained from finite element calculations and that obtained using thec
Ž . Ž . Ž . Ž .Oliver]Pharr procedure for: a ns0.0; b ns0.1; c ns0.3; and d ns0.5.
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loading]unloading curves obtained from finite element
calculations, we evaluate the contact depth using Eq.
Ž .5 and plot it in terms of h rh in Fig. 3a]d. It isc
apparent from Fig. 3 that the Oliver and Pharr proce-

Ždure is valid when the ratio of YrE is large e.g.
.)0.05 for 0.0-n-0.5 . This is expected since this

procedure is based on Sneddon’s analysis of surface
w xprofiles for elastic contacts 32 . For materials with a

Ž y4 y2 .wide range of YrE e.g. 10 ]10 , such as metals,
the Oliver and Pharr procedure may not be accurate.
For example, the procedure underestimates the contact
area for elastic]perfectly plastic solids over most YrE

Ž .values Fig. 3a . The error is most significant when
piling-up occurs, i.e. h rh)1. In fact, the contactc

Ž .depth, h , estimated using Eq. 5 is always less thanc
Ž .h . It should also be noted that Eq. 5 could alsom

overestimate contact area for materials with a large
Ž .work-hardening exponent, e.g. ns0.5 Fig. 3d . Thus,

the Oliver]Pharr procedure may be used with confi-
Ždence for highly elastic materials e.g. YrE)0.05 for

.0.0-n-0.5 . For materials with a wide range of YrE
Ž y4 y2 .e.g. 10 ]10 , however, this procedure should be
used with caution.

2.2.3. Relationship between hardness and mechanical
properties

Ž . Ž .Using Eqs. 2 and 3 , the ratio of hardness to initial
w xyield strength is given by 22

H Y Ž .sP ,¨ ,n ,u 6h ž /Y E

where P is a dimensionless function. Clearly, theh
hardness is independent of the depth of indentation, h.
The ratio HrY is, in principle, a function of YrE, ¨, n,

Ž .as well as indenter geometry u . Taking us688 and
¨ s 0.3, for example, the dependence of HrY on YrE
and n is illustrated in Fig. 4. It is apparent that, over
the practically relevant range of YrE, the ratio HrY is
not a constant. The hardness, H, depends on YrE and
n. As expected, work-hardening has a greater effect on
the hardness value for small ratio of YrE. For small
ratios of YrE, the hardness value can be many times
that of the initial yield strength, Y. For a large ratio of
YrE, the hardness value approaches 1.7 times the
initial yield strength, Y, and is insensitive to n.

w xTabor 1 introduced the concept of ‘representative
yield stress’, Y , and showed that, for conical indenta-o
tion in metals, the hardness value is approximately
three times Y , where Y is the yield stress at a repre-o o
sentative strain, « , of 8]10%. Following Tabor’s idea,o

Ž n.we evaluated Hr K« and noted an approximate scal-o
Ž n.ing relationship between Hr K« and YrE, if theo

value for strain, « , is taken to be 10%. In Fig. 5, weo
Ž n .plot Hr 0.10 K against YrE. All the data points

shown in Fig. 4 lie approximately on a single curve.

Fig. 4. Relationships between HrY and YrE for several values of n.

Thus, the concept of representative strain seems appli-
cable.

Ž n.It is also evident that Hr K« is a function of YrEo
and is, therefore, not a constant over the wide range of

Ž . Ž n.YrE Fig. 5 . For YrE-0.02, Hr K« is approxi-o
Ž .mately 2.4]2.8 Fig. 5 . For YrE)0.06, HrY is ap-

Ž .proximately 1.7]2.8 Fig. 4 , i.e.

Hs2.8Y , for YrEª0.0o

where Y is the yield stress at 10% of strain, ando

Hs1.7Y , for YrEª0.1.

2.2.4. Relationship between hardness, elastic modulus, and
the work of indentation

The total work done by the indenter, W , to causetot
elastic and plastic deformation when the indenter
reaches a maximum depth and the work done by the
solid to the indenter during unloading, W , have beenu

w xexamined 24,26 . It was found that a remarkable corre-
lation exists between the ratio of irreversible work to

Ž n.Fig. 5. A relationship between Hr K« and YrE by assumingo
« s0.10.o
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total work for a complete loading]unloading cycle,
Ž .W yW rW , and the ratio of hardness to elastictot u tot

w xmodulus 24 . This correlation is illustrated in Fig. 6,

W yWH tot u Ž .fP 7U u ž /E Wtot

U Ž 2 .where E sEr 1y¨ . The subscript, u, denotes a
Ž .possible dependence on indenter angle, since Eq. 7

and Fig. 6 were obtained for a particular indenter
Ž .angle. Nevertheless, Eq. 7 shows that, for a given

indenter angle, there is an approximate linear relation-
U Ž .ship between HrE and W yW rW . Conse-tot u tot

quently, the value HrEU may be obtained from the
measurement of W and W , which can be determinedu tot
readily by simple numerical integration based on force
and displacement measurements.

The ratio of hardness to elastic modulus, HrEU , is
of significant interest in tribology. This ratio multiplied
by a geometric factor is the ‘plasticity index’ which
describes the deformation properties of rough surfaces
w x33 . The correlation provides an alternative method for
measuring HrEU on micro- and nano-meter scale for
both metals and ceramics. Furthermore, both H and
EU may be obtained using the above correlation
together with a well-known relationship between elastic
modulus, contact area, and initial unloading slope
w x19,24 .

3. Indentation into power-law creep solids

3.1. Dimensional analysis

We consider a three-dimensional, rigid, conical in-
denter indenting normally into a homogeneous solid

w xwith power-law creep 28,29 ,

m Ž .ssb« 8˙

U Ž .Fig. 6. A relationship between HrE and W yW rW , includ-tot u tot
ing data from finite element calculations for conical indenters and
experimental results for a few materials using pyramidal indenters.

where s is stress, « is strain rate, b and m are material˙
constants. For an isotropic solid obeying the creep rule

Ž .given by Eq. 8 , the two variables force, F, and contact
area, A , during loading are functions of all the inde-c
pendent governing parameters, b, m, indenter displace-

˙Ž . Ž .ment h , rate of indenter displacement h , and inden-
Ž .ter angle u . They are also implicitly dependent on

˙time, t, since h and h are dependent on time and
Ž .h t ˙ w xts dhrh. Dimensional analysis shows that 27H
Ž .h 0 s0

m
ḣ 2 c Ž . Ž .Fsb h P m ,u 9až /h

2 c Ž . Ž .A sh P m ,u 10c b

where P c and P c are dimensionless functions of di-a b

mensionless parameters m and u. Consequently, the
hardness is

m mc˙ ˙PF h ha cŽ . Ž .Hs sb ' bP 11c gž / ž /A h hPc b

where P c 'P c rP c . To simplify notation, P c 'P c
g a a i i

Ž .m,u for isa ,b,g in the following.
This equation shows that the strain rate dependence

˙of hardness is contained in the parameter, hrh. Com-
Ž . Ž .paring Eq. 11 with Eq. 8 , we observe that, aside

from the pre-factor, the power-law dependence of
˙hardness, H, on hrh in indentation experiments is the

same as that of stress, s, on strain-rate, «, in uniaxial˙
˙creep tests. Thus, the parameter, hrh, can indeed be

chosen, aside from a time-independent pre-factor, to
represent indentation strain rate, as has been assumed

w xby several authors in the past 34]40 .
When the force, instead of displacement, is the inde-

Ž .pendent variable, Eq. 9 may be integrated to obtain
w x27 :

mr2mr2 t2 y1r2c 1r mŽ . Ž . Ž . Ž .h t s bP F t d t 12Haž /m 0

Ž .with initial condition h 0 s0. In the following, the
above equations are applied to several types of fre-
quently encountered indentation experiments in which

˙ ˙ ˙ w xeither h, F, or FrF is kept constant 34]40 .

4. Results and discussion

˙ ˙4.1. Constant displacement rate, hsh , experimentsc

˙When h is constant, the force and hardness are,c
Ž . Ž .according to Eqs. 9 and 11 ,
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m
ḣcc 2Ž . Ž .Fs bP h 13a ž /h

m
ḣccŽ . Ž .Hs bP 14g ž /h

Thus, the force during loading is proportional to h2ym

and is no longer proportional to h2. The hardness
decreases with indentation depth. The creep exponent,
m, can be obtained from either the indentation loading

˙Ž . Ž .curve or from the graph of ln H vs. ln hrh .

˙ ˙4.2. Constant loading rate, FsF , experimentsc

˙When F is constant, it can be shown that the forcec
w xand hardness are 27 ,

Ž .mr mq1mq1Ž .1r mq1c 2rŽmq1.˙Ž . Ž .Fs bP F h 15a c 2

mm m ˙˙ Fh mq1 cc cŽ . Ž . Ž .Hs bP s bP 16g g ž /ž / ž /h 2 F

Thus, the force during loading is proportional to
h2rŽmq1.. The hardness decreases with increasing in-
dentation load. The creep exponent, m, can be ob-
tained from either the indentation loading curve, the

˙Ž . Ž . Ž .graph of ln H vs. ln hrh , or the graph of ln H vs.
˙Ž .ln FrF .

˙4.3. Constant loading rate o¨er load, FrF, experiments

˙Ž .Since FrF sl is a constant, the force is given by
FsF el t, where F is the force at ts0. Substituting0 0

Ž .into Eq. 12 , we obtain a solution:

mr21 2 mr21r2 l tr mŽ . Ž . Ž .h t s F e y1 170ž /c lbP' a

and for large t)mrl,

1r2m2 F0 l tr2Ž . Ž .h t f e 18m cž /l bPa

Consequently, the indentation strain rate is given by

˙ ˙h l y1 l 1 Fyl tr mŽ . Ž .s 1ye f s 19h 2 2 2 F

˙ ˙Thus, the indentation strain-rate, hrh is half of FrF
after a transient period of the order of mrl. Using

Fig. 7. Scaling relationships between indenter load and displacement
Ž . Ž .a and between hardness and indenter displacement b for constant
loading rate over load cases where the parameter l t s3.max

Ž . Ž .Eqs. 9 and 11 , the respective indentation loading
curve and hardness may be written,

m
ll t c 2Ž . Ž .FsF e f bP h 200 a ž /2

m mḣ lc cŽ . Ž . Ž .Hs bP f bP 21g g ž /ž /h 2

Ž . Ž .Eqs. 20 and 21 , scaled by their respective values at
h , are shown in Fig. 7. Clearly, hardness reaches am

˙steady state value when FrF is kept constant. Corre-
spondingly, the loading force is again proportional to

2 ˙ mŽ .h . The hardness increases with FrF . The creep
exponent, m, can be obtained from either the indenta-

˙Ž . Ž .tion loading curve, the graph of ln H vs. ln FrF , or
˙Ž . Ž .of ln H vs. ln hrh .

The results of the above analysis are consistent with
experimental data from the literature. For example,
numerous authors have shown a linear dependence

˙Ž . Ž .between ln H and ln hrh for all three loading con-
˙ ˙ ˙Žditions considered above i.e. either h, F, or FrF is

. w xkept constant 34]40 . Furthermore, the creep expo-
nent, m, has been obtained from the slope of the

˙Ž . Ž . w xstraight lines in the graph of ln H vs. ln hrh 34]40 .
The creep exponent, m, has also been obtained from
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indentation loading curves by Grau et al. using either
˙ ˙constant h or F experiments and equations similar to

Ž . Ž . w xEqs. 13 and 15 39 .
Several authors have reported an ‘indentation size

˙ ˙effect’ in constant h or F experiments as predicted by
w Ž . Ž .xthe above equations Eqs. 14 and 16 : hardness

decreases with increasing indentation depth or load
w x37,40 . It has also been demonstrated recently by Lu-

˙w xcas and Oliver 40 that in constant FrF experiments,
the indentation strain rate reaches a ‘steady state’ and

˙ Ž .is given by 0.5FrF in agreement with Eq. 19 . Fur-
w xthermore, these authors showed 40 that the steady

state hardness is independent of indentation depth and
˙ mŽ . Ž .is proportional to FrF as predicted by Eq. 21 .

5. Conclusions

We have derived scaling relationships for loading
and unloading curve, contact depth, and hardness for
indentation in elastic]plastic solids with work-harden-
ing. The square dependence of loading curves is char-
acteristic of indentation in homogenous solids using

Ž .self-similar indenters e.g. conical and pyramidal . For
a given indenter geometry, hardness depends on both
the elastic and plastic properties of materials and is not
necessarily three times the yield strength. The condi-
tions for ‘piling-up’ and ‘sinking-in’ of surface profiles
during indentation were obtained. The Oliver]Pharr
procedure for estimating contact depth may be used
with confidence for highly elastic materials. However,
this procedure may cause significant error when piling-
up occurs. A relationship between the ratio of hardness
to elastic modulus and the ratio of irreversible work to
total work was found. This relationship offers a new
method for obtaining hardness and elastic modulus.
Finally, a scaling theory for indentation in power-law
creep solids using self-similar indenters was developed.
An ‘indentation size effect’ is expected in experiments
using either constant displacement rate or constant
loading rate. In contrast, hardness reaches a steady
state value in experiments using constant loading rate
over load.

These conclusions are the results of the scaling the-
ory based on several clearly specified assumptions, in-
cluding the ones that describe the behavior of materials
w Ž . Ž .xe.g. Eqs. 1 and 8 . In reality, however, materials
behavior may be much more complex. For hard materi-
als, for example, the deformation mechanism responsi-
ble for the hardness impression may include a signifi-

w xcant fracture component 41 instead of the purely
Ž .elastic]plastic behavior given by Eq. 1 . Likewise, al-

ternative mechanisms may be responsible for the
observed indentation size effects, including strain-

w xgradient plasticity 42 , imperfection in the indenter
w x w xgeometry 43 , and surface roughness 44 . Neverthe-

less, the conclusions of this study provide a framework
for understanding indentation hardness measurements
for two classes of materials, i.e. elastic]plastic solids

w Ž .xwith power-law work-hardening Eq. 1 and solids
w Ž .xwith power-law creep Eq. 8 . These results of this

work may also be used to identify new mechanisms
responsible for deformation in indentation experi-
ments.
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