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Abstract

Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at
di8erent scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental
di;culties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics
provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping
closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling
problems in mechanics, that is, turbulence in <uids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium
statistical theory may be an e8ective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical
theory are discussed.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past several years, there has been an explosive
growth of interest in the multiscale coupling problems
(Glimm and Sharp, 1997; Phillips, 2001; Kwauk and Li,
2000; He et al., 2003). Generally speaking, the multiscale
problems can be categorized into three classes: related to
equilibrium, near equilibrium, and far-from-equilibrium
cases. At present, a great challenge of multiscale problems
is the multiscale coupling e8ects in far from equilibrium
systems. The traditional approaches are insu;cient for such
problems.

For a far from equilibrium system, the multiscale coupling
problems present the following characteristics:

(1) There may be several active scales spanning very wide
ranges of space and time (Barenblatt, 1979). For ex-
ample, in materials failure, the atomic bonds in solid
materials are at the scale of angstroms (10−10 m) and
may break at femtoseconds (10−15 s), while the result-
ing fracture is at the scale of the whole size of the sam-
ple and may take seconds or hours (Bazant and Chen,
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1997). Vortical structures in the atmosphere may range
from meters to thousands of kilometers, while the vis-
cous dissipation of the vortices appears at the mean
free path of molecular.

(2) The physical mechanisms or the dynamics may di8er
on di8erent scales (Bai et al., 2002a). It is well known
that universal similarity has made some success in mul-
tiscale problems, e.g., the similar solutions in mechan-
ics and the power-law behaviors in critical phenom-
ena. However, the universal similarity gets rooted in
self-similarity in physics at various scales, and this is
questionable in cases of physics diversity. More impor-
tantly, for far from equilibrium systems, the dynamics
usually display strong nonlinearity, and the dynamical
nonlinearity plays an essential role in multiscale evo-
lution.

(3) The multiscale coupling is usually strong and/or sensi-
tive (Xia et al., 1997). It is inappropriate to deal with
an isolated scale of interest and eliminate all other
scales. The perturbation method suitable for weak
coupling condition also fails in dealing with strong
coupling e8ects. In addition, the mean Held approxi-
mation cannot be directly applied to the case with sen-
sitive multiscale coupling. Furthermore, for an equi-
librium state, the statistical mechanics is a successful
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theory dealing with the coupling between microscopic
and macroscopic scales. The basic postulate of this
approach is the principle of equal probability. How-
ever, for far from equilibrium state, the principle of
equal probability fails, and there is no simple statisti-
cal relationship between microscopic and macroscopic
scales.

The diversity and coupling of physics at various scales are
two essential features of multiscale problems in far from
equilibrium systems. Hence, the vital key to multiscale prob-
lems is to characterize the coupling e8ects between di8erent
physics on various scales. In addition, in engineering and
natural media, there inevitably exists disordered heterogene-
ity. The coupling between dynamical nonlinearity and the
disordered heterogeneity at multiscales makes the problem
much more complex.

In recent years, great e8orts have been made to charac-
terize the coupling e8ects in complex multiscale systems.
Several new approaches have been presented and devel-
oped (Bai et al., 2002a; Phillips, 2001; He and Rubinstein,
2003; Hughes et al., 2001). In this paper, we introduce these
methods for two typical multiscale coupling examples in
classic mechanics: <uid turbulence and solid failure. It is
well-known that both <uid turbulence and solid failure are
most di;cult problems in mechanics. The richness of com-
plexity in these phenomena is mainly rooted in the multi-
scale coupling e8ect. The characteristics and mechanisms
in these systems are very much di8erent, and at present, it
seems di;cult to construct a uniHed theoretical framework
for these problems. However, there might be some common
points, which are noticeable and valuable to us if we want
to establish a theoretical framework for problems with mul-
tiscale coupling e8ects.

2. Multiscale coupling in turbulence

Fluid turbulence exhibits complex <ow patterns of
di8erent scale eddies. These eddies are involved in di8erent
physics at di8erent scales and might be coupled strongly
with each other. Traditionally, turbulence modeling and
simulation are constructed over one single scale range and
thus have some limitations. For example, the turbulence
models responsible for energy dissipation at small scales
may completely fail in intermittency. Therefore, multiscale
modeling and simulation are necessary to be developed.

The diverse physics and strong coupling present two
fundamental di;culties for turbulence multiscale modeling
and simulation. First, the diversity excludes the existence
of scale-similarity solutions so that the classic similarity
method does not work at all. More complicated is that
there exist chaotic motions at small eddies which interplay
with coherent structures at large eddies. The interactions
of chaotic motions over an extensive scale range are the
core of nonlinear dynamics. Second, the strong coupling

requires inclusion of the physical e8ects at other scales. The
inclusion can be taken neither as a small perturbation due
to the coupling intensity, nor as a simple averaging since
there is no scale separation.

The statistical–mechanical treatment of multiscale cou-
pling is a useful approach for turbulence multiscale mod-
eling and simulation. The reason for it will be explained
later. We will introduce our recent work aligned in this di-
rection: mapping closure approximation approach and mul-
tiscale large-eddy simulation. The goal for the e8orts is to
develop such multiscale models and simulation approaches
for both theoretical analysis and numerical calculation so
that models can (1) express the signiHcant physics of inter-
est without reference to the full detail of Navier–Stokes tur-
bulence; (2) be theoretically tractable and numerically im-
plementable in compact forms and (3) can be formulated in
a deductive fashion from Navier–Stokes equation without
any empirical assumption.

2.1. Mapping closure approximation

The statistical description of turbulence can be generally
achieved by the moment and probability density function
(PDF) approaches (Pope, 1991). However, the moment ap-
proach is di;cult with nonlinearity and the PDF approach
is di;cult with spatial coupling. Both of them need to in-
troduce some phenomenological assumptions. The assump-
tions have to be justiHed. Mapping closure approximation
(MCA) (He and Rubinstein, 2003) is a new deductive ap-
proach that can treat the spatial coupling by successive ap-
proximation without any ad hoc assumptions. In the MCA
approach, no assumption on the form of coupling is made.
An unknown form of coupling between di8erent scales is
treated as the one mapped from a known form of coupling
and the mapping is completely determined by the dynamics.
The di8erence between MCA and the previous mapping
closures approach (Chen et al., 1989; Pope, 1991) lies in
its nature of successive approximation in the sense of suc-
cessively larger joint PDFs. The MAC approach has been
typically developed for the advection–di8usion-reaction
equations (He and Zhang, 2004).

We consider the simple case of a reactive scalar advected
by a stochastic velocity Held:

@’
@t

+ u · ∇’ = �∇2’ + Q(’); (1)

where the velocity Held u obeys ∇·u=0 and is independent
of the scalar Held. Without loss of generality, it may be
prescribed as a known homogeneous and isotropic Gaussian
Held. � is a molecular di8usivity, Q(’) mimics a one-species
chemical reaction.

In the MCA approach, the scalar Held is mapped from a
known random Held by a mapping function

’(x; t) = X (�(x; t); t): (2)
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Here, the known random Held �(x; t) is taken as a Gaussian
reference Held. Its one- and two-point joint PDFs are deHned
by

g1(�) =
1√
2�

exp
[
−�2

2

]
; (3)

g2(�1; �2; r; t) ≡ g1(�1; �2; �(r; t))

=
1

2�
√

1 − �2
exp

[
−�2

1+�2
2−2��1�2

2(1−�2)

]
; (4)

where

�(r; t) =
〈�(x; t)�(x + r; t)〉

〈� 2(x; t)〉 : (5)

Here r is the magnitude of separation vector r. The mapping
function is required to represent the one- and two-point joint
PDFs of the scalar ’ via the following equations:

f1( ; t) = g1(�)
[
@X (�; t)

@�

]−1

; (6)

f2( 1;  2; r; t)=g2(�1; �2; r; t)
[
@X (�1; t)

@�1

@X (�2; t)
@�2

]−1

: (7)

In the classic mapping closure approach (Chen et al., 1989;
Pope, 1991), the mapping function X is only required to
represent the one-point PDF of the scalar ’ via Eq. (6).
Di8erentiating Eq. (6) with respect to t yields

@f1

@t
+

@
@ 

[
f1

@X
@t

]
= 0: (8)

Meanwhile, the transport equation for the one-point PDF,
f1( ; t), can be derived by the test function method (Kimura
and Kraichnan, 1993) as

@f1

@t
+

@
@ 

[f1〈�∇2’ + Q(’)| 〉] = 0: (9)

Thus, comparing Eqs. (8) and (9), substituting (2) and us-
ing the Gaussian regression on conditional moments, the
transport equation for the mapping function (2) becomes

@X
@t

= −C�′′(0; t)�
[
@2X
@�2 − �

@X
@�

]
+ Q(X ): (10)

It is easily shown from the Gaussianity Eqs. (3) and (4) that
〈(∇�)2〉 = −C�′′(0; t), where C = 2 for a two-dimensional
physical space and C = 3 for a three-dimensional physical
space. Eq. (10) has been obtained in (Chen et al., 1989),
where −C�′′(0; t) is represented by the variance 〈(∇�)2〉.
However, the correlation �(r; t) in Eq. (10) still remains to
be unknown and has to be input externally. For example, it
is set using the results from direct numerical simulation in
Chen et al. (1989). Therefore, Eq. (10) is unclosed.

The two-point correlation �(r; t) cannot be obtained from
the one-point PDF g1(�). Rather, it has to be calculated from
the two-point joint PDF g2(�1; �2; r; t). Hence, we propose

to invoke the two-point joint PDF (Eq. (4)), which is not
used in the classic mapping closure approach. By di8eren-
tiating Eq. (7) with respect to t, we obtain

@f2

@t
+

@
@ 1

[
f2

@X1

@t

]
+

@
@ 2

[
f2

@X2

@t

]
=

f2

g2

@g2

@t
: (11)

The transport equation for the two-point joint PDF f2

derived from the test function method (Kimura and
Kraichnan, 1993) has the form

@f2

@t
+ ∇r · [f2〈(u2 − u1)| 1;  2〉]

= − @
@ 1

[f2〈�∇2’1 + Q(’1)| 1;  2〉]

− @
@ 2

[f2〈�∇2’2 + Q(’2)| 1;  2〉]: (12)

Subtracting Eq. (11) from Eq. (12) leads to

f2

g2

@f2

@t
+ ∇r · [f2〈(u2 − u1)| 1;  2〉]

=
@

@ 1
[f2H1] +

@
@ 2

[f2H2]; (13)

where

Hk = �〈∇2’k | k〉 − �〈∇2’k | 1;  2〉: (14)

Multiplying Eq. (13) by  1 and  2 and then taking the mean
with substitution of Eqs. (2), (4) and (7), we obtain the
transport equation for �(r; t) as follows:

@�(r; t)
@t
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]
; (15)

where the Gaussian regression is again used. Eqs. (10) and
(15) form a closed system for the mapping function, where
Eq. (10) describes the evolution of the shape of the mapping
function and Eq. (15) speciHes the rate at which the mapping
function evolves. Numerical simulations verify the validity
of the MCA models.

A formal representation for N -point joint PDFs fN can
be also obtained using the mapping function (Eq. (2)) and
the N -point joint PDF gN of reference Held:

fN ( 1; : : : ;  N ; t) = gN ( 1; : : : ;  N ; t) ·
[
@X1

@�1
· · · @X2

@�2

]−1

;

(16)

where the reference Held may not be Gaussian. Eq. (16)
forms a MCA hierarchy for the PDFs representations. If



1680 H. Wang et al. / Chemical Engineering Science 59 (2004) 1677–1686

the reference Held is nonGaussian, the hierarchy represents
a successive approximation of the MCA approach to statis-
tics of scalar Helds. In particular, the second equation with
N=2 are responsible for two-point correlations and the
following-up equations with N ¿ 2 for the N -point correla-
tions. If the reference Held is Gaussian, the approximation is
automatically truncated since the N -point PDFs of Gaussian
random Held is completely determined by its two-point
joint PDF. In this sense, the MCA approach for Gaussian
reference Helds used in this paper is self-contained. The
mapping equations could be derived from the governing
equations, for example, Eqs. (10) and (15) are derived from
the scalar equations. As soon as the solutions of the map-
ping equations are obtained, the statistics of the unknown
random Helds can be calculated via Eqs. (6) and (7). In this
approach, the multiscale properties of the unknown random
Helds are represented by the known Gaussian random Helds
via the nonlinear mapping. The Gaussian random Helds may
be chosen as multiscale Helds, such as their energy spectra
have several compact peaks. Therefore, the strong coupling
of di8erent scales are represented by nonlinear mapping
of scale interaction in multiscale Gaussain random Helds.
Since the PDF approach could treat nonlinearity exactly, the
MCA approach is able to treat the strong coupling of scales.

2.2. Multiscale large-eddy simulation

Numerical simulations resolve some ranges of scales due
to its nature of discritization. Direct numerical simulations
resolve all scales of interests but it is prohibitively expen-
sive for engineering problems; Reynolds average methods
only resolve the averaged motion modeling the e8ects of all
other scales on averaged motions. Such kind of models are
di;cult to construct due to modeling all other scales; in-
volved in large-eddy simulations (LES), the motion of large
scales are calculated while the e8ects of the motion of small
scales on larger scales are modeled. Since the motions of
small scales in turbulence are universal to some extent, the
modeling can be constructed. However, turbulent motions
cannot be simply decomposed into large and small scales. It
is well-known that the scales in turbulence are over a wide
range and the motions at di8erent scale ranges might be
physically di8erent. In order to account for these di8erent
physics at di8erent scale ranges, multiscale LES (MLES)
is being developed: the velocity Helds are decomposed into
multiple components corresponding to di8erent scales. The
di8erent scales are corresponding to di8erent physics. The
di8erent physics at di8erent scales require di8erent subgrid
scale models. The LES equations with di8erent subgrid scale
models need di8erent numerical schemes and grids.

Multiscale method has a long history and di8erent impli-
cations. The di8erent implications lead to di8erent numer-
ical implementations and thus produce di8erent results. In
the MLES developed by Hughes et al. (2001), turbulence
models are conHned to small scales but not applied to large

scales. The MLES method can be understood as follows:
the solutions of Navier–Stokes equation are decomposed
into resolved and unresolved parts, where the resolved ones
are numerically calculated on grids and the unresolved parts
are discarded under the grids. Further, the resolved solu-
tions are partitioned into two parts: large and small scales.
In classic LES method, subgrid scale models are applied to
the resolved parts of both large and small scales in order
to account for the e8ects of unresolved scales on all of re-
solved scales; in Hughes’s MLES method, the subgrid-scale
models are only applied to the small-scale parts and the ef-
fects of unresolved scales on the large scales are ignored.
The reason for it is that small scales are mostly responsible
for energy dissipation so that the eddy viscosity coe;cients
are dominantly large at small scales and negligibly small at
large scales. The MLES method leads to better predictions
on the statistics related with energy (He et al., 2002b).

We suggest applying two di8erent subgrid-scale models to
large and small scales. The multiscale LES approach could
be described and the governing equation of Navier–Stokes
Helds can be written in Fourier space as follows:(

@
@t

+ �k2
)

ui (̃k; t)

= − i
2
Mimn(̃k; p̃; q̃)um(p̃; t)un(̃q; t) + fi (̃k; t); (17)

where M is a project operator and f a large-scale random
forcing. The velocity Held could be divided into two groups:
the resolved velocity Held uR and the unresolved one uU .
The resolved velocity Held is further partitioned into the
large-scale part ul and the small-scale part us. Their govern-
ing equation for the large and small scale parts are, respec-
tively,(

@
@t

+ �k2
)

ul
i (̃k; t)

= − i
2

Mimn
p;q∈uR

(̃k; p̃; q̃)ul
m(p̃; t)ul

n(̃q; t)

+fi (̃k; t) + Ml
p;q �∈UR ; (18)(

@
@t

+ �k2
)

us
i (̃k; t)

= − i
2

Mimn
p;q∈uR

(̃k; p̃; q̃)us
m(p̃; t)us

n(̃q; t) + Ms
p;q �∈UR ; (19)

where Ml
p;q �∈UR and Ms

p;q �∈UR are the large-scale and
small-scale parts that interact with unresolved scales. In the
usual LES approach, they are modeled using the same SGS
models. In the multiscale approach (Hughes et al., 2001),
the Hrst one is ignored and the second one is modeled.
Although the e8ects of unresolved scales on large scales
can be negligible in terms of energy balance, the e8ects
have to be recovered based on the relevant physics of the
unresolved scales, such as random backscatters. Our ap-
proach is to develop di8erent SGS models for those two
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di8erent parts. A signiHcant example is time correlations
with its application to aero-acoustics. The LES with the
subgrid-scale models responsible for energy balance over-
predicts decorrelation time scale (He et al., 2002a). The
overprediction could be remedied by application of random
forcing model to large scales. The multiscale large eddy
simulation method could be generalized to multiple parti-
tions of the resolved solution in company with application
of multiscale subgrid scale models. The challenge is to
develop the multiscale subgrid scale models for relevant
physics in partitioned ranges of scales.

3. Multiscale coupling in solid failure

Our previous studies show that the failure of heteroge-
neous brittle media under loading has three phases on dif-
ferent scales (Bai et al., 1994; Xia et al., 2000):

(1) globally stable accumulation of microdamage;
(2) damage localization; and
(3) catastrophic rupture.

The microdamage is on an intermediate scale between
microscopic and macroscopic, named mesoscopic scale.
Obviously, the accumulation of microdamage occurs at
mesoscopic scale, the damage localization occurs at locally
macroscopic scale, and the catastrophic rupture occurs at
globally macroscopic scale. In addition, the physics of the
three phases are di8erent: the accumulation of microdam-
age results from nucleation, extension and coalescence of
microdamages; the damage localization is relevant to the
evolution mode of damage pattern dynamics and the rupture
concerning catastrophe transition. Generally, the dynamics
of these physical processes is nonlinear.

It is observed that the damage and rupture in disordered
heterogeneous brittle media displays catastrophe transition,
sample speciHcity and trans-scale sensitivity (Bai et al.,
2002b; Xia et al., 1996; Xia et al., 2002; Zhang et al., 2004).
These features signify that the di8erent scales involved in
material failure are strongly and sensitively coupled. Ac-
tually, the whole process of damage and rupture appears
as an inverse cascade from smaller scales to larger scales
and eventually to global scale of the system. During such a
process, the e8ects of some disordered structures at meso-
scopic scales can be ampliHed signiHcantly due to dynami-
cal nonlinearity, and become important at local macroscopic
scales, which lead to sample speciHcity of catastrophe tran-
sition. Therefore, catastrophe transition, sample speciHcity,
and trans-scale sensitivity can be attributed to the coupling
e8ects between the dynamical nonlinearity and the disor-
dered heterogeneity on multiscales.

The physics diversity and strong coupling between mul-
tiscales and multiphysics are two fundamental di;culties in
the problem of solid failure. In addition, these di;culties
can be greatly enhanced by the dynamic nonlinearity and

the disordered heterogeneity on multiscales. These di;cul-
ties make the popular similarity and perturbation methods
unHt. Then, what is the suitable approach to this problem?

3.1. Statistical mesoscopic damage mechanics

In principle, the problem of solid failure can be repre-
sented by a statistical approach linking microscopic scale
and macroscopic scale. However, it is di;cult to represent
nonequilibrium statistical evolution in a statistical approach
linking microscopic and macroscopic scales due to the huge
span of the scale. In addition, there are no simple direct con-
nections between microscopic and macroscopic features in
the process. Furthermore, a noticeable feature in the prob-
lem is the richness of structures and processes at meso-
scopic scale. These mesoscale structures, such as grains, mi-
crocracks, etc. play signiHcant role in the problem. Hence,
a rational approach is to select the intermediate but es-
sential scale between macroscopic and microscopic scales,
namely mesoscopic scales, and to develop a statistical ap-
proach linking mesoscopic and macroscopic scales. Such
a theory is called statistical mesoscopic damage mechan-
ics. Statistical mesoscopic damage mechanics can be con-
structed based on various mesoscopic representations, e.g.,
mesoscopic damage representation (Bai et al., 2002a; Wang
et al., 2002), and mesoscopic unit representation (Zhang
et al., 2004). In this paper, we introduce the framework based
on mesoscopic unit representation, which is called driven
nonlinear threshold model.

In the driven nonlinear threshold model (Rundle et al.,
2000; Xia et al., 2000; Zhang et al., 2004), it is assumed that
a macroscopic representative element (at x) is comprised
of a great number of mesoscopic units, which are charac-
terized by their broken threshold. The mesoscopic units are
assumed to be statistically identical, and their threshold !c

follows a statistical distribution function. The macroscopic
representative element is subjected to nominal driving force
!0(x; t), which is adopted as macroscopic, external parame-
ter. When a unit breaks, it will be excluded from the distri-
bution function. So, we introduce a time-dependent distribu-
tion function of intact units ’(!c; x; t) with initial condition

’(!c; x; t = 0) = h(!c; x): (20)

By applying local mean Held approximation to the macro-
scopic representative element, we obtain the relationship be-
tween the true driving force and the nominal driving force:

!(x; t) =
!0(x; t)

1 − D(x; t)
; (21)

where D is continuum damage deHned as

D(x; t) = 1 −
∫ ∞

0
’(!c; x; t) d!c: (22)

It is noticeable that the behavior of an individual macro-
scopic representative element does not display sample speci-
Hcity owing to the mean Held approximation.
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The evolution of distribution function ’(!c; x; t) is
suggested to be governed by an equation based on damage
relaxation model (the velocity of the macroscopic represen-
tative element is neglected):

@’(!c; x; t)
@t

= −’(!c; x; t)
%

; (23)

where % is the characteristic time of damage relaxation.
Generally speaking, % is a function of the true driving
force !(x; t) and the threshold !c of mesoscopic units,
% = %(!c; !(x; t)). Integrating Eq. (23) and substituting the
deHnition of continuum damage (Eq. (22)) in the obtained
equation, we obtain the evolution equation of continuum
damage:

@D(x; t)
@t

= f = −
∫ ∞

0

@’(!c; x; t)
@t

d!c

=
∫ ∞

0

’(!c; x; t)
%(!c; !(x; t))

d!c; (24)

where f is the dynamic function of damage (DFD), the
agent linking mesoscopic damage relaxation and macro-
scopic damage evolution.

To establish a closed, complete formulation, Eq. (24)
should be associated with traditional, macroscopic equations
of continuum, momentum, and energy, as well as constitu-
tive relationship. This is a formulation of intrinsically trans-
scale closure. However, it is worth noticing that in the con-
stitutive relationship, the e8ects of microdamage should be
taken into account as a reduction in the elastic modulus:

E(x; t) = E0(x)(1 − D(x; t)); (25)

where E0 is the intact elastic modulus, and E the e8ective
elastic modulus of damaged media. In addition, the stress
appearing in traditional macroscopic equations is nominal
stress denoted by !0(x; t), while the stress in mesoscopic dy-
namics equation (Eq. (24)) is the true driving stress !(x; t).

With the above-mentioned formulation, we investigated
the role of multiscale coupling in damage evolution and
failure, in particular, at two transition points: the localiza-
tion transition and the catastrophe transition. In Section 3.2,
we derive a criterion to damage localization transition. In
Section 3.3, we present a common precursor of catastrophic
rupture called critical sensitivity, which may give a clue to
prediction of catastrophe transition. In Section 3.4, the en-
ergy dissipation during damage and failure is discussed.

3.2. Damage localization

Localization is one of the typical characteristics in com-
plex phenomena. Damage localization is deHned as the for-
mation of damage pattern that some heavily damaged local
areas are surrounded by lightly damaged areas (Bai et al.,
2002a,b). In particular, damage localization refers to the
transition of damage evolution mode from randomly and sta-
tistically homogeneous damage to inhomogeneous damage.

The damage localization can be represented by statistical
mesoscopic damage mechanics.

There are three characteristic scales in the formulation of
statistical mesoscopic damage mechanics: the scale of meso-
scopic damage, the scale of macroscopic, representative el-
ement and the scale of the sample, i.e., the global scale.
It is interesting that the damage localization is concerning
an emerging new scale: the scale of localization, which is
an uncertain scale between representative element scale and
global scale. This can be attributed to pattern formation or
self-organization phenomenon.

In order to demonstrate the mechanism of damage lo-
calization, i.e., how the localization scale emerges between
representative scale and global scale, we introduce a closed
approximation at macroscopic scale. In other words, we
introduce an approximate model of dynamical function of
damage expressed by merely macroscopic variables:

f = f(D(x; t); !0(x; t)): (26)

For simplicity, let us consider one-dimensional state. Thus,
the continuum damage Held equation (Eq. (24)) becomes

@D(x; t)
@t

= f(D(x; t); !0(x; t)); (27)

where x is the one-dimensional coordinate of the macro-
scopic representative element.

In the area with D 	= 0; @D=@x 	= 0, the condition of the
appearance of damage localization can be represented as

@
@D
@x
@t
@D
@x

¿
@D=@t
D

or
@
@t

(
@D=@x

D

)
¿ 0: (28)

Eq. (28) means that the relative in-homogeneity of contin-
uum damage enhances with time.

From Eqs. (27) and (28), the criterion of damage local-
ization is expressed by

fD¿
f
D

− f!0

!0x

Dx
; (29)

where fD = @f=@D; f!0 = @f=@!0; !0x = @!0=@x and
Dx = @D=@x.

In the simple case with uniform nominal stress !0x = 0,
the criterion of damage localization becomes

fD¿
f
D
: (30)

From fD = f=D, a threshold continuum damage DL can
be obtained, and the damage localization will appear when
D¿DL. In this case, the damage localization results from
the ampliHcation of pre-existing statistical <uctuations at
small scales, and hence, displays uncertainty macroscopi-
cally. That is to say, in macroscopically identical samples
under identical macroscopic loading, the locations, scales



H. Wang et al. / Chemical Engineering Science 59 (2004) 1677–1686 1683

and degrees of damage localization may be very di8erent
from sample to sample.

3.3. Critical sensitivity

The sample-speciHc catastrophe is the other typical char-
acteristic in complex phenomena. This leads to di;culty in
the catastrophe prediction. A possible strategy is to seek
common features in the vicinity of catastrophe, which may
give some clues to catastrophe prediction.

Critical sensitivity may be a common feature of catastro-
phe in multiscale heterogeneous brittle media (Xia et al.,
2002; Zhang et al., 2004). The critical sensitivity means that,
in heterogeneous brittle media, the response of the system
to controlled parameters, like external loading, may become
signiHcantly sensitive as the system approaches its catastro-
phe transition point.

Let us consider the case of monotonic, quasi-static load-
ing. For simplicity, we neglect the position dependence of
all macroscopic variables, and adopt the global mean Held
approximation. In this case, the only controlled parameter
is the nominal stress !0 and the continuum damage is de-
termined by the nominal driving force D = D(!0), which
satisHes the following equation:

D(!0) =
∫ !0

1−D(!0)

0
h(!c) d!c: (31)

Denoting damage-induced cumulative energy release by
Q(!0), we deHne the response to external loading as

R(!0) =
dQ(!0)

d!0
(32)

and the sensitivity is measured by

S(!0) =
!0

R(!0)
dR(!0)

d!0
: (33)

The catastrophe is deHned by that inHnitesimal increase of
controlled parameter induces Hnite response, i.e., the catas-
trophe transition point !0 = !0f satisHes the following con-
dition:

dD(!0)
d!0

= ∞ or R(!0) = ∞: (34)

We will denote the damage fraction at catastrophe transition
point by Dc. For !0 ¡!0f , the equilibrium state of the system
evolves continuously with increasing !0 and D(!0f )¡Dc.
This is the phase of stable accumulation of damage. How-
ever, at !0 = !0f , the equilibrium state jumps to global fail-
ure state (D = 1) displaying catastrophe transition, i.e. the
system falls into a situation of self-sustained catastrophic
failure.

If the initial distribution function is assumed to be a
Weibull distribution function

h(!c) =
m
�

(
!c

�

)m−1

exp
(

−
(
!c

�

)m)
; (35)
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Fig. 1. Cumulative energy release and critical sensitivity in driven non-
linear threshold systems in the case of quasi-static loading based on mean
Held approximation and damage relaxation model (Zhang et al., 2003).

where m is the Weibull modulus and we take � = 1. The
catastrophe appears at !0f = (me)−1=m and Dc = 1 − e−1=m

(Zhang et al., 2004). As the nominal driving force !0 ap-
proaches !0f , the sensitivity S(!0) increases signiHcantly
(lim!0→!0f S(!0) = ∞, see Fig. 1) suggesting the critical
sensitivity.

For the case with time-dependent nominal driving force
!0(t), the distribution function f(!c; t) can be solved from
Eqs. (20)–(23). The energy release rate is proportional to

R(t) =
!2

0(t)
(1 − D(t))2

dD(t)
dt

; (36)

where

D(t) = 1 −
∫ ∞

0
’(!c; t) d!c: (37)

The sensitivity of response of the system to nominal driving
force can be measured by

S(t) =
!0(t)
R(t)

dR(t)=dt
d!0(t)=dt

: (38)

In Eq. (38), there are two characteristic time scales in the
model: the characteristic times of damage relaxation and
external loading, respectively. The evolution behavior is
determined by the ratio of two time scales re<ecting the
coupling and competition of the loading and the relaxation
processes. The results (Xia et al., 2002) show that the be-
havior of the system may be very di8erent from that in the
quasi-static loading case, but the sensitivity also increases
signiHcantly prior to catastrophe suggesting the critical sen-
sitivity of catastrophe, as shown in Fig. 2.

Taking the damage-induced stress <uctuations and stress
re-distribution into account, we also investigated the catas-
trophe behavior in macroscopically identical samples with
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Fig. 2. Cumulative energy release and sensitivity in the case of time-
dependent nominal driving force !0(t) = .(!0f =%0)t (Zhang et al., 2003).

the driven nonlinear threshold model. The numerical re-
sults show that the catastrophe transition point and the time
series of sensitivity are di8erent from sample to sample
(Fig. 3). However, all of the samples present critical sensitiv-
ity, i.e., the sensitivity increases signiHcantly prior to catas-
trophe. At the catastrophe transition point, the system falls
into a situation of self-sustained failure. Meanwhile, corre-
lation scale of stress <uctuations increases from the scale
of mesoscopic heterogeneity to macroscopic scale. Such a
behavior is named the trans-scale <uctuations (Bai et al.,
2002a,b; Xia et al., 2002). The damage-induced stress redis-
tribution is the main dynamical nonlinearity in the damage
and rupture phenomena. The trans-scale <uctuations mean
that the stress <uctuations resulting from damage-induced
stress redistribution display dynamical coupling between
multiscales.

The failure prediction is one of the greatest scientiHc,
technological and societal concerns. In multiscale hetero-
geneous brittle media, the multiscale coupling results in
sample-speciHc catastrophe. This implies that the failure is
sensitively dependent on the details of disordered hetero-
geneity on multiscales, which leads to di;culties in fail-
ure prediction. Based on a closed multiscale formulation
for damage evolution, the statistical mesoscopic damage
mechanics, we found that the damage localization and the
critical sensitivity may be common precursory features of
catastrophe in multiscale heterogeneous brittle media. To
monitor these precursors may give some clues to catastro-
phe prediction.

3.4. Energy dissipation

Energy dissipation, or energy release, is an important as-
pect in damage and failure of solids (see Figs. 1 and 2).
From the point of view of energy dissipation, the damage

Fig. 3. Critical sensitivity based on numerical simulations (Xia et al.,
2002) (A) simulation result of a single sample and (B) simulation result
of 200 samples.

accumulation corresponds to energy dissipation at smaller
scales (mesoscopic scales) and the catastrophic rupture cor-
responds to energy dissipation at very much larger scales
(macroscopic or global scales). In Section 3.3, we deHned
the sensitivity based on damage-induced energy release. It
is noticeable that as a precursory feature of catastrophe,
the critical sensitivity implies an essential, trans-scale cor-
relation, i.e., the correlation between energy dissipations at
smaller and much larger scales. The underlying mechanism
is trans-scale, dynamical coupling: the sensitivity re<ects
the e8ect of inverse cascade of energy release from smaller
scales to larger scales, and, as catastrophe transition point is
approached the inverse cascade of energy release at meso-
scopic scales triggers the catastrophic energy release.

Now we consider the case of quasi-static, monotonic load-
ing. Based on mean-Held approximations (21), (22) and
(25) and assuming that the threshold of mesoscopic units
follows Weibull distribution function (35), the cumulative
input work W (0) and the cumulative energy release Q(0) are



H. Wang et al. / Chemical Engineering Science 59 (2004) 1677–1686 1685

expressed by

W (0) =
∫ 0

0
!0 d0 = E0

∫ 0

0
0 exp(−0m) d0 (39)

and

Q(0) = W (0) − 1
2 E002 exp(−0m)

= E0

∫ 0

0
0 exp(−0m) d0 − 1

2
E002 exp(−0m); (40)

respectively, where 0 denotes the strain expressed by the
unit with � = 1. DeHning energy dissipation coe;cient

1 =
Q
W

; (41)

we obtain

1(0) = 1 −
1
2 02 exp(−0m)∫ 0

0 0 exp(−0m) d0
: (42)

It is interesting to note that the energy dissipation coe;cient
1 is independent of the initial elastic modulus E0, a macro-
scopically averaging parameter, and is only dependent on
the Weibull modulus m, which characterizes the diversity
of unit threshold at mesoscopic scales, i.e., mesoscopic het-
erogeneity.

4. Discussions

The physical diversity and strong coupling between multi-
scales and multi-physics are two fundamental di;culties for
multiscale coupling problems in far from equilibrium sys-
tems. These di;culties can be compounded by the dynamic
nonlinearity and the disordered heterogeneity on multiscales.
The classic similarity method and perturbation method do
not work at all for these problems. In this paper, we present
some methods for two typical multiscale coupling problems
in mechanics: turbulence in <uids and failure in solids. The
characteristics and mechanisms in these systems are very
much di8erent, and at present, it seems di;cult to construct a
uniHed theoretical framework for these problems. However,
they might share the common points, which are noticeable.

(1) Nonequilibrium statistical theory based on nonlinear
dynamics may be an e8ective approach to most multiscale
coupling problems. The number of degrees of freedom
at smaller scale is much higher than that at larger scale.
Furthermore, the disorder and stochasticity may play im-
portant roles in the problems. So, the statistical theory is
the Hrst choice to link di8erent scales. For far from equi-
librium systems, simple relationship between microscopic
scale and macroscopic scale, such as the principle of equal
probability in equilibrium state, is no longer available.
Therefore, it is necessary to introduce various statistical
evolution models.

(2) To choose suitable scale range, reasonable represen-
tation and the relevant dynamical model is very important
for the derivation of a closed multiscale formulation, which

should be tractable but re<ect the main physical mechanism.
In principle, the multiscale coupling problems can be rep-
resented by a statistical approach linking microscopic scale
and macroscopic scale. However, it is di;cult to represent
nonequilibrium statistical evolution in a statistical approach
linking microscopic and macroscopic scales due to the huge
span of the scales. A possible approach is to select several
intermediate and essential scales between macroscopic and
microscopic scales. The elementary objects at the interme-
diate scales are really the systems with huge degrees of free-
dom. However, in a tractable framework, we have to select
a few most important collective degrees of freedom to char-
acterize the elementary objects at the intermediate scales. As
the scale range and the representation are chosen, we have
to construct the relevant dynamic models at various scales
and the coupling model linking di8erent scales.

(3) In multiscale coupling problems, strong interactions
among multi-physics at di8erent scales usually exist. There-
fore, joint probability density functions and correlation func-
tions, like the BBGKY hierarchy in traditional statistical
physics, have to be introduced into theoretical formulation.
This makes the formulation untractable. It becomes neces-
sary to introduce proper approximation at some level based
on their dynamics. The mapping closure approximation ap-
proach is a new development in this direction.
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