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Relationships between initial unloading slope, contact depth,
and mechanical properties for conical indentation in linear
viscoelastic solids
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Using analytical and finite element modeling, we studied conical indentation in linear
viscoelastic solids with either displacement or load as the independent variable. We
examine the relationships between initial unloading slope, contact depth, and
viscoelastic properties for various loading conditions such as constant displacement
rate, constant loading rate, and constant indentation strain rate. We then discuss
whether the Oliver–Pharr method for determining contact depth, originally proposed
for indentation in elastic and elastic-plastic solids, is applicable to indentation in
viscoelastic solids. We conclude with a few comments about two commonly used
experimental procedures for indentation measurements in viscoelastic solids: the
“hold-at-peak-load” technique and the constant indentation strain-rate method.

I. INTRODUCTION

Instrumented indentation is playing an increasing role
in the study of small-scale mechanical behavior of “soft”
matters, such as polymers, composites, biomaterials, and
food products. Many of these materials exhibit viscoelas-
tic behavior, especially at elevated temperatures. Model-
ing of indentation into viscoelastic solids thus forms the
basis for analyzing indentation experiments in these ma-
terials. Theoretical studies of contacting linear viscoelas-
tic bodies became active since the mid 1950s by the work
of Lee,1 Radok,2 Lee and Radok,3 Hunter,4 Gramham,5,6

Yang,7 and Ting.8,9 In recent years, a number of authors
have extended the early work to the analysis of indenta-
tion measurements in viscoelastic solids.10–15 In this pa-
per, we examine, through analytical and finite element
modeling, the relationship between initial unloading
slope, contact depth, and viscoelastic properties. We then
discuss whether the commonly used Oliver–Pharr
method16,17 is applicable to indentation in viscoelastic

solids. We conclude with a critique of two commonly
used experimental procedures, the “hold-at-peak-load”
technique and the constant indentation strain-rate
method, for indentation measurements in viscoelastic
solids.

II. ANALYTICAL RESULTS

A. Conical indentation in linear
viscoelastic solids

We consider a rigid, smooth, and frictionless conical
indenter with half-angle � indenting a viscoelastic solid
that can be described by the following constitutive rela-
tionships18,19 between deviatoric stress and strain, sij and
dij, and between dilatational stress and strain, �ii and �ii,

sij�t� = 2�
0

t

G�t − ��
�dij���

��
d�

�ii�t� = 3�
0

t

K�t − ��
��ii���

��
d� , (1)

where G(t) is the relaxation modulus in shear and K(t) is
the relaxation modulus in dilatation. The time dependent
Young’s modulus and Poisson’s ratio are then given by
E(t) � [9K(t) G(t)]/[3K(t) + G(t)] and �(t) � [E(t)/
2G(t)]−1, respectively.
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Alternatively, the stress-strain relations can be written
as18,19
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where J1(t) is the shear compliance and J2(t) is the volu-
metric compliance. Obviously, Eqs. (1) and (2) are not
independent of each other. In fact, the relationships be-
tween the relaxation and creep functions, G(t) and J1(t),
as well as K(t) and J2(t), have simple forms after trans-
forming them using Laplace transformation,18,19
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As a consequence, we have,

J1�0�G�0� = J1���G��� = 1

J2�0�K�0� = J2���K��� = 1 . (4)

In the following, we assume that Poisson’s ratio is
time independent. Consequently, G(t) and � are sufficient
to describe the linear viscoelastic behavior.

B. Relationships between load, displacement,
and contact depth

With displacement as the independent variable, the
relationship between force F(t) and displacement h(t) is
then given by1–9,20

F�t� =
8 tan�

��1 − �� �
0

t
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dh���

d�
d� . (5)

With force as the independent variable, the relation-
ship between displacement h(t) and force F(t) is given
by1–9

h2�t� =
��1 − ��

4 tan� �
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The load–displacement relationship can therefore be
obtained if the viscoelastic properties of materials, G(t)
or J1(t), and �, are known using the respective Eqs. (5)
or (6). Conversely, the viscoelastic properties may be
obtained from measured F(t) versus h(t) relations by
solving integral Eqs. (5) or (6).10–15 Equations (5) and (6)

reduce to the well-known equation for conical indenta-
tion into purely elastic solids21

F =
4G tan�

��1 − ��
h2 , (7)

where G � 1/J1 and � are the time-independent shear
modulus and Poisson’s ratio, respectively.

Equations (5) and (6) are special cases of more general
expressions derived by Graham5 and Ting.8 They
showed that Eqs. (5) and (6) are valid when the contact
area is a monotonically increasing function of time. Un-
der the same condition, the ratio of contact depth to in-
denter displacement is the same as that in the purely
elastic case5,8

hc

h
=

2

�
. (8)

C. Relationships between initial unloading slope,
contact depth, and viscoelastic property

The equations for unloading where the contact area
decreases monotonically have also been derived,5,8

though they are more complicated. As a result, a number
of authors have proposed methods for deducing G(t) or
J1(t) from indentation loading curves using Eqs. (5) or
(6) without using the information contained in the inden-
tation unloading curves.20 However, we have recently
shown20 that Eqs. (5) and (8) can be used to evaluate the
initial unloading slope of unloading curves when dis-
placement is the independent variable. Suppose unload-
ing takes place at t � t+m with a constant unloading rate
of dh/dt|tm

+ � − �h, we have, using Eqs. (5) and (8) for 0
	 tm 	 tm + 
t and 
t → 0,
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The second term on the right-hand side of Eq. (9) is a
function of loading history. When the second term is
negligible compared to the first term, which can be
achieved by using fast unloading (i.e., large �h), the re-
lationship between unloading slope and contact area be-
comes identical to that for purely elastic contacts16,21
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=
4G�0�tan�

1 − �
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2

��

E�0�

1 − �2 �A , (10)

where A � �(hc tan �)2 is the contact area at time tm,
when unloading takes place from hm.

An equation similar to Eq. (9) can also be derived for
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situations where force is the independent variable. Sup-
pose unloading takes place at t � tm

+ with a constant
unloading rate of dF/dt|tm

+ � − �F, we have, using Eq. (6)
for 0 	 t 	 tm + 
t and 
t → 0,
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The initial unloading slope is then given by, using
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When the unloading rate �F is much larger than the
loading history dependent integral

�
0

tm

�dJ1����d���=tm−�
��dF����d��d� ,

the relationship between unloading slope and contact
depth or area is again the same as that for purely elastic
contacts [Eq. (10)].

Eqs. (9) and (12) suggest that the initial unloading
slopes converge when the unloading rate, either in dis-
placement or load control, is sufficiently fast. Once
this limiting case is reached, Eq. (10) can be used to
determine the “instantaneous” moduli, G(0)/(1 − �) or
E(0)/(1 − �2), provided that the contact depth, hc or area
A is known as a function of hm � h(tm). The latter
condition is provided by Eq. (8). An interesting, though
not necessarily surprising, implication of Eqs. (9) and
(12) is that the details of loading history, i.e., h(t) or F(t)
in the respective displacement- or load-controlled meas-
urements, are unimportant as long as the unloading rate is
sufficiently fast. A sufficient condition on h(t) or F(t)
prior to fast unloading is that they are increasing function
of time so that the contact area is a monotonically in-
creasing function of time, thus ensuring the validity of
Eqs. (5) and (6).

D. Oliver–Pharr method

The most widely used method for estimating the con-
tact depth or area is the procedure proposed by Oliver
and Pharr.16,17 Based on the results of Sneddon,21 Oliver
and Pharr developed an expression for hc at the indenter
displacement hm,

hc = hm − 
Fm

�dF�dh�m
, (13)

where Fm and (dF/dh)m are the respective load and the
initial slope of the unloading curve at the indenter dis-
placement depth hm. The numerical value of  is (2/
�)(�−2) � 0.727 for conical indenter. Although Eq. (13)
was derived from solutions to elastic contact problems, it
has been used to estimate contact depth for indentation in
elastic-plastic solids16,17 and viscoelastic solids.22,23 In
the following, we examine the conditions for using
Eq. (10) and the applicability of Eq. (13) by analyzing the
complete loading–unloading curves and contact depths
obtained from finite element calculations.

III. NUMERICAL RESULTS

A. Finite element model

We consider a frictionless, rigid conical indenter of
half angle � � 70.3° degrees indenting an isotropic lin-
ear viscoelastic solid. This indenter half angle is chosen
since its depth-to-volume relation is the same as that for
the Berkovich indenter so that the results are expected to
be applicable to Berkovich indentation.

A three-parameter “standard” linear viscoelastic
model is used to describe the shear and hydrostatic re-
laxation modulus (see Fig. 1):
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G�t� = G1�1 −
G1

G1 + G2
�1 − e−t��s��

K�t� = K1�1 −
K1

K1 + K2
�1 − e−t��s�� , (14)

where the relaxation time �s � �/(G1 + G2). Various
parameters are given as G1 � 235 MPa, G2 � 25.8 MPa,
K1 � 688 MPa, K2 � 75.6 MPa, and t � 0.99 s. The
parameters are chosen such that Poisson’s ratio is time
independent, though both G(t) and K(t) are time depen-
dent. Specifically, their values at t � 0 and t � � are
as follows: G(0) � 235 MPa and G(�) � 23.2 MPa;
K(0) � 688 MPa, and K(�) � 68.1 MPa; and � �
0.483. The parameters of this fictitious model solid are
used for illustrative purposes. Because of linearity, the
results can be scaled to represent other materials of the
same general type when the dimensionless parameters,
such as G1/G2, K1/K2, G1/K1, and t/�s, are equal. Finite
element calculations were carried out using the classical
isotropic linear viscoelastic model implemented in
ABAQUS (HKS, Inc., Pawtucket, RI) using either dis-
placement or load as the independent variable. The finite
element mesh is the same as that used in Ref. 24.

B. Displacement control

For constant indentation displacement rate profiles
given in Fig. 2(a), the corresponding loading–unloading
curves from finite element calculations are shown in
Fig. 2(b). These examples clearly show that, for the same
loading history, the initial unloading slopes converge
when unloading rate is sufficiently fast, in agreement
with Eq. (9). A tangent line with the converged initial
unloading slope is also shown in Fig. 2(b). Furthermore,
Fig. 2(b) suggests that the complete unloading curve
converges to one limiting case as the unloading rate
increases.

C. Load control

For constant indentation loading rate profiles given in
Fig. 3(a), the corresponding loading–unloading curves

from finite element calculations are shown in Fig. 3(b).
When unloading is slow, the indentation depth continues
to increase after the force reaches a maximum, resulting
in a “bulge” or “nose” in the unloading curve, which has
also been observed experimentally.22–27 This bulge is the
consequence of the continuing forward movement of the
indenter during the early stage of unloading. Because of
the forward movement of the indenter, the maximum
contact area occurs after the force maximum. This de-
layed maximum contact area behavior was predicted by
the analytical theories of Graham5 and Ting,8,9 and was
verified by numerical calculations.20 With increasing un-
loading rate, the “bulge” disappears. For the same load-
ing history, the initial unloading slope converges when
the unloading rate is sufficiently fast, in agreement with
Eq. (12). Furthermore, the entire unloading curve con-
verges to one limiting case as the unloading rate
increases.

FIG. 1. Three-parameter “standard” model for linear viscoelastic solids.

FIG. 2. (a) Displacement–time profiles and (b) calculated loading–
unloading curves for the same loading rate and three different unload-
ing rates. The tangent line with initial unloading slope is also shown
for the converged unloading curve (b). The loading–unloading curves
are labeled by the time duration of unloading.
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D. Constant indentation strain rate

We now consider indentation under the condition of
constant indentation strain rates, i.e., (dF/dt)/F is a con-
stant, which has been suggested as a preferred method for
performing indentation measurements in viscoelastic sol-
ids.23 We calculate a set of loading–unloading curves
with loading–unloading history shown in Fig. 4(a): ex-
ponential loading, F(t) � 0.001 �N · EXP(t/1.0 s) [i.e.,
(dF/dt)/F � 1.0 s−1), and linear unloading from the same
maximum indentation force with various unloading rates.
The corresponding loading–unloading curves shown in
Fig. 4(b) demonstrate that the initial unloading slope and
the shape of unloading curve are functions of the unload-
ing condition when the loading condition is kept the
same. The initial unloading slope and the entire unload-
ing curve converge when unloading rate is sufficiently
fast.

The above three examples show that we can define an

unloading curve as the “converged” unloading curve for
any given loading history.

E. Contact depth and unloading slope

The contact area A and contact depth hc are also ob-
tained from finite element calculations. The calculations
show hc/h ≈ 0.658 ± 0.001, which is larger than 2/� ≈
0.636 predicted by Eq. (8). This suggests that Eq. (8)
needs to be slightly modified to become

hc

h
= �

2

�
, (15)

where � � 1.034 ± 0.002. Furthermore, the finite ele-
ment results show that there is a small correction to
Eq. (10),

dF

dh�
h=hm

= �
4G�0�tan�

1 − �
hc = �

2

��

E�0�

1 − �2�A,

(16)

where � � 1.06 ± 0.02. The same � correction factor has
also been seen in the modeling of indentation in purely

FIG. 3. (a) Force–time profiles and (b) the calculated loading–
unloading curves for the same loading rate and four different unload-
ing rates. The tangent line with initial unloading slope is also shown
for the converged unloading curve (b). The loading–unloading curves
are labeled by the time duration of unloading.

FIG. 4. (a) Exponential loading and linear-unloading from the same
maximum indentation load within a time period 0.01, 0.1, 1.0, and
10 s and (b) calculated loading–unloading curves.
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elastic solids and in elastic-plastic solids.17,20 The origin
of this correction factor has been discussed previ-
ously.17,20 It has been attributed to the fact that Eq. (10)
was derived using linearized boundary conditions and
infinitesimal theory of continuum mechanics; finite ele-
ment calculations take into account nonlinear effects, in-
cluding large strain and moving contact boundaries.20

Because the values of � and � are nearly the same as
those for purely elastic and elastic-plastic cases, we be-
lieve they are insensitive to the particular choice of vis-
coelastic properties used in the finite element calcula-
tions. Although further improvement in the precision and
accuracy of the � and � values is possible by additional
calculations, Eqs. (15) and (16) are expected to be more
accurate than the corresponding Eqs. (8) and (10) for
determining contact depth hc and “instantaneous”
moduli, G(0)/(1 − �) or E(0)/(1 − �2), when unloading is
sufficiently fast.

F. Oliver–Pharr method

We now discuss the applicability of the Oliver–Pharr
method for estimating contact depth for indentation in
viscoelastic solids. Finite element calculations were car-
ried out using constant indentation displacement rate pro-
files given in Fig. 5(a). The load–displacement curves in
Fig. 5(b) show that the force required to reach a given
indentation depth increases with the loading rate, consis-
tent with the expected behavior of viscoelastic solids.
The unloading rates chosen in the calculations are suffi-
ciently fast so that they generate the corresponding con-
verged unloading curves. Furthermore, finite element
calculations show that the contact depth hc is the same
for all three cases shown in Fig. 5(b), as expected from
Eq. (15) since hm is the same. According to Eq. (16),
therefore, the unloading slopes are the same, which is
evident from Fig. 5(b).

On the other hand, Fig. 5(b) demonstrates that the
Oliver–Pharr procedure for estimating the contact depth
using Eq. (13) is not applicable to indentation in vis-
coelastic solids. This can be seen by the fact that Eq. (13)
would have predicted different contact depths hc since
Fm is different while hm and (dF/dh)m are the same for
the three cases, contradicting the fact that hc is the same.
Indeed, the contact depths calculated from the Oliver–
Pharr procedure for the three cases shown in Fig. 5(b) are
0.34, 0.43, and 0.48 �m for the 0.5, 5.0, and 50 s loading
times, respectively. In contrast, the actual contact depth
for all three cases is 0.33 �m. The errors are 3%, 30%,
and 45%. Errors of the same magnitude are also seen
from finite element calculations when load, instead of
displacement, is the independent variable. Thus, the
Oliver–Pharr procedure may cause significant error in
determining contact depth or contact area when it is ap-
plied to the analysis of indentation in viscoelastic solids.

IV. CONCLUSIONS

Using analytical and finite element modeling, we have
established a relationship between contact depth and in-
denter displacement [Eq. (15)] and a relationship be-
tween initial unloading slope, contact depth, and the in-
stantaneous modulus for sufficiently high rate of unload-
ing [Eq. (16)]. We have shown that the Oliver–Pharr
method for estimating the contact depth [Eq. (13)] is not
applicable to indentation in viscoelastic solids.

These analytical and numerical results form the basis
for performing indentation measurements in linear
viscoelastic solids. Specifically, Eqs. (9) and (12) imply
that:

(1) Fast unloading is essential in determining the in-
stantaneous modulus from initial unloading slope using
Eq. (16). The numerical examples in this paper suggest

FIG. 5. (a) Displacement–time profiles and (b) calculated loading-
unloading curves for three different loading rates and sufficiently fast
unloading rates. The tangent lines with initial unloading slopes are also
shown in (b). The loading–unloading curves are labeled by the time
duration of loading.
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that “sufficiently fast” unloading is achieved when the
time duration of liner unloading is about 0.1 to 0.01 times
the relaxation time of linear viscoelastic materials. In
practice, the manifestation of sufficiently fast unloading
is the “converged” unloading curve that can be obtained
using different unloading rates spanning several order of
magnitudes. The development and improvement of in-
dentation equipment that allow fast and slow responses
are thus encouraged.

(2) A number of authors have suggested adding a
“hold-at-peak-load” period between loading and unload-
ing to avoid the occurrence of the “bulge” on the unload-
ing curves.23,25–30 It has been shown recently that the
initial unloading slope is nevertheless a function of hold-
ing history and unloading condition.23,25–30 A correction
formula has been proposed by Ngan et al. for the initial
unloading slope after the hold period so that the instan-
taneous modulus can be obtained from the unloading
slope.27–30 Eqs. (9) and (12) suggest, however, that the
hold period may be unnecessary if unloading can be
made sufficiently fast so that the instantaneous modulus
can be obtained from the unloading slope.

(3) There has been much discussion in the literature
on the constant indentation strain-rate loading condition,
i.e., constant (dF/dt)/F or (dh/dt)/h for measuring the
time-dependent properties of materials using conical or
pyramidal indenters.23,31 It has been shown both ex-
perimentally31 and theoretically32 that the hardness of
power-law creep solids is proportional to [(dF/dt)/F]m,
where m is the creep exponent. Consequently, the
hardness value is depth-independent under the con-
stant indentation strain rate loading conditions, whereas
it is depth-dependent under other loading conditions
such as constant loading rate or constant displace-
ment rate. Furthermore, the creep exponent can be ob-
tained from hardness measurements using several inden-
tation strain rates. Therefore, constant indentation strain
rate measurements are particularly useful for measuring
the properties of power-law creep solids. In contrast,
Eq. (9) and (12) show that loading methods, either in
displacement control or load control, are unimportant for
measuring the instantaneous modulus of viscoelastic sol-
ids, as long as the unloading rate is sufficiently fast. It
seems, therefore, there is little advantage of using the
constant indentation strain rate method for measuring the
instantaneous modulus of viscoelastic solids.

(4) When the effect of tip rounding can be neglected,
a simple relationship exists for determining the contact
depth from indentation depth [Eq. (15)].

These general guidelines should help improve the ac-
curacy and reproducibility of conical indentation meas-
urements for determining properties of purely linear vis-
coelastic solids. Although this work focuses on conical
indentation, similar conclusions also hold true for spheri-
cal indentation in linear viscoelastic solids.33
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