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A new modified expanding cavity model for characterizing the
spherical indentation behavior of bulk metallic glass with pile-up
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Spherical nanoindentation tests were performed on Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass and pile-ups were observed
around the indenter. A new modified expanding cavity model was developed to characterize the indentation deformation behavior
of strain-hardening and pressure-dependent materials. By using this model, the representative stress–strain response of this bulk
metallic glass to hardness and indentation in the elastic–plastic regime were obtained taking into consideration the effect of pile-up.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Considerable efforts have been devoted to studying
the inhomogeneous deformation and fracture behavior
of bulk metallic glasses (BMGs) [1,2]. Recent investiga-
tion showed that the shear fracture of BMGs does not
occur along the maximum shear stress plane, irrespec-
tive of whether the loading is compressive or tensile
[3]. Therefore, the Mohr–Coulomb (MC) and Druc-
ker–Prager (DP) criteria were suggested to characterize
the yield behavior of BMGs [4–6]. In addition, a
depth-sensing indentation technique has proved to be
a powerful tool for investigating material properties
such as hardness, elastic modulus, stress–strain re-
sponse, etc. [7,8]. Increasing efforts have been made re-
cently to use this technique to study the deformation
behavior of BMGs [9–14]. Theoretical analyses employ-
ing various models have been proposed to explain the
elasto-plastic properties of materials undergoing inden-
tation testing, among which the expanding cavity model
(ECM) developed by Johnson [15] is particularly
valuable. Using the DP yield criterion, Narasimhan
[16] developed a modified expanding cavity model
(DP-ECM) to describe the indentation deformation of
pressure-dependent materials. In this model, the strain-
hardening effect was not included. Recently, two new
modified ECMs for elastic power-law hardening and
linear-hardening materials were developed by Gao
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et al. [17]. However, these two strain-hardening-based
models are confined to pressure-independent materials.
Furthermore, for some materials pile-ups around the in-
denter are usually observed and neglecting the pile-up
effect may lead to errors in evaluating hardness and
stress–strain response [8]. Ahn and Kwon [18] proposed
a hardening exponent iterative method to take account
of the effect of pile-up, but in their work only the fully
plastic response was considered. In the present study,
spherical nanoindentation tests were performed on
Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG and pile-ups around
the indenter were observed. A new modified ECM was
developed to characterize the indentation deformation
behavior of strain-hardening and pressure-dependent
materials. By using this model and an iterative method,
the representative stress–strain response of this BMG to
hardness and indentation in the elastic–plastic regime
were obtained with pile-up.

The test material Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG
was fabricated by the same routine as used by Liu
et al. [19]. The specimens were then machined into disks
8 mm in diameter and 1 mm thick and the top surfaces
of the specimens were electro-polished in methanol solu-
tion containing 33 vol.% HNO3. A MTS Nano Indenter
XP with a spherical diamond indenter of 10.6 lm in ra-
dius was used to perform the nanoindentation tests. All
tests were performed in load-control mode using a load-
ing rate of 1 mN s�1. Single loading–unloading experi-
ments of peak load 10, 15, 25, 30, 90, 150, 200, 300,
400, 500 mN were performed. In addition, the final peak
sevier Ltd. All rights reserved.
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load was 512 mN and seven partial unloadings down to
90% of peak load at each point were also applied. For
each loading case, more than six indentations were
performed to determine reproducibility. A typical load–
displacement curve and the atomic force microscope
(AFM) image of the residual indent at 500 mN are
shown in Figure 1. Figure 1b clearly shows pile-up
around the indenter. In addition, the heights of the
pile-ups for relatively larger loading cases were also
measured using the AFM.

The stress, strain and displacement fields prevailing in
a hollow sphere with inner radius a and outer radius b,
subjected to the internal pressure p, are considered. The
radius of the elastic–plastic interface is c and the pres-
sure acting on this interface is pc. The linear DP yield
criterion in spherical coordinates (rr,rh,rh) is repre-
sented by [20]:

ðrh � rrÞ þ ðrr þ 2rhÞ tan a=3 ¼ ð1� tan a=3Þry;

where a is the pressure sensitivity index and ry is the uni-
axial compressive yield stress. Based on the solution of a
strain-hardening material with von Mises’ yield criterion
reported by Gao et al. [17], the basic equations for deter-
mining the elasto-plastic (a 6 r < c) solution of the
power-law hardening and pressure-dependent materials
are:

rh � rr ¼ rdrr=ð2drÞ; re ¼ Ken
e ; ð1a; bÞ

eh ¼ e/ ¼ ðrh � rrÞee=ð2reÞ; ð2a; bÞ
Figure 1. (a) A typical load–displacement curve and (b) AFM image of
the residual indent at 500 mN.
er ¼ �ðrh � rrÞee=re; ð2cÞ
re ¼ rh � rr; rdeh=dr ¼ er � eh; ð3a; bÞ
where E is the Young’s modulus, K is a material con-
stant ðK ¼ En=rn�1

y Þ, and re and ee are equivalent stress
and strain, respectively. The boundary conditions are:

rrjr¼a ¼ �p; rrjr¼c ¼ �pc; ð4a; bÞ
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ðrh � rrÞ þ ðrr þ 2rhÞ tan a=3 ¼ ð1� tan a=3Þryjr¼c:

ð4cÞ
It should be noted that the influence of the hydrostatic
stress on the plastic strain increment was ignored in
deriving Eq. (2a,b,c) to obtain the analytic solution,
and the relative error of doing this will be discussed
below.

According to the continuity of rr at r = c, the pres-
sure acting on elastic–plastic interface pc will be given
by [16]

P c ¼ �rrjr¼c ¼ �
ð1� tan a=3Þry

½3b3=ð2c3Þ þ tan a�
ð1� b3=r3Þ; ð5Þ

which can be used in actual indentation tests as b!1
to obtain pc = 2(1 � tana/3)ry/3. Solving this boundary-
value problem then leads to

rr ¼ �ð2=3Þð1� tan a=3Þryf1þ bðc=rÞ3n � 1c=ng; ð6aÞ
rh ¼ r/ ¼ ð1� tan a=3Þrybð1� 2=3nÞðc=rÞ3n

þ ð2=3Þð1=n� 1Þc; ð6bÞ
ur ¼ ryð1� tan a=3Þ1=nc3=ð2Er2Þ: ð6cÞ
Using Eq. (6a) in boundary condition Eq. (4a) gives

p=ry ¼ ð2=3Þð1� tan a=3Þf1þ bðc=aÞ3n � 1c=ng: ð7Þ
Comparing the ratio of p/ry in Eq. (7) with the result of
Narasimhan [16], in which the hydrostatic stress on plas-
tic strain increment was considered in the perfect-plas-
ticity case, the relative error obtained is <13.6%, as
c/a = 2,0 6 a 6 20�. Choosing a = 10.3� (mentioned
later) for the Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG used in
present study gives a relative error was 7.6%. According
to this comparison, it is acceptable to ignore the hydro-
static stress on the plastic strain increment.

According to Johnson [15], the volume of the mate-
rial displaced by the indenter is accommodated by the
radial expansion of the hemispherical core:

2pa2durðaÞ ¼ pa2 tan bda ffi pa2ða=RÞda;

where b is the contact angle between the indenter and
the specimen, and R is the indenter radius, as shown
in Figure 2. Then, the plastic zone radius c and contact
radius a is obtained by using c! 0 as a! 0:

c3=a3 ¼ Eað1� tan a=3Þ�1=n
=ð4ryRÞ:

However, the stress state immediately beneath the
indenter will not be purely hydrostatic in actual indenta-
tion tests. Employing the modification idea used in
Studman et al. [21], the new modified expanding cavity
model (n-DP-ECM) for strain-hardening and pressure
sensitivity materials was obtained as:



Figure 3. Variation of normalized hardness with normalized indenta-
tion strain.

Figure 2. Schematic illustrating elastic–plastic indentation as idealized
by the expanding cavity model considering pile-up.

Figure 4. Comparisons between flow properties calculated from the
spherical indentation test and that from the uniaxial compression test.
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H=ry ¼ ð2=3Þbð1� 1=nÞð1� tan a=3Þ
þ ð1=nþ 3=4ÞðEa=4RryÞnc: ð8Þ

It is interesting to find that Eq. (8) can be reduced to

H=ry ¼ ð2=3Þbð1� 1=nÞ þ ð1=nþ 3=4ÞðEa=4RryÞnc;
as a ¼ 0

and

H=ry ¼ ð2=3Þb7=4þ lnðEa=4RryÞc; as a ¼ 0; n! 0:

These two results were the same as those obtained previ-
ously by Gao et al. [17].

The spherical indentation deformation of Zr41.2Ti13.8-
Cu12.5Ni10Be22.5 is geometrically modeled in Figure 2,
where material pile-up around the indenter is included.
According to Ahn and Kwon [18], aop is the contact ra-
dius without piling-up defined by the Oliver–Pharr (OP)
method [7] and apu is the real contact radius. To calcu-
late the real contact radius, the strain-hardening-depen-
dent relationship a2

pu ¼ ð5� 3n0:7Þa2
op=4 proposed by

Taljat and Zacharia [22] based on the finite element sim-
ulation under a J2-associated flow rule, a ratio a/R of
0.5, a friction coefficient of 0.2 and a ratio ry/E of
1/500 was used in present study. In spite of the difference
in material parameters, a good consistency was obtained
between the depths of piling-up calculated by the formu-
lation of Taljat and Zacharia [22] and the results of
AFM, and the average relative error was less than
9.6%. According to the uniaxial compression test [19],
the pressure sensitivity index a is approximately equiva-
lent to 10.3� [20]. E and ry values of 95 and 1.71 GPa,
respectively, are obtained, and these values will be used
in the calculations below.

Both the results of normalized hardness H/ry with
normalized indentation strain Ea/ryR in the present
study and Patnaik et al.’s [11] work by OP analysis are
shown in Figure 3. For comparison, the results based
on the pile-up heights measured using AFM are also
shown in Figure 3. It is noted that both the results
obtained by OP analysis deviate from the results of
AFM. According to the definition of hardness
H ¼ F =pa2

op, this deviation is chiefly due to the contact
radius aop, which is smaller than the real contact radius
apu. Also, a similar deviation in indentation representa-
tive stress–strain relation was found between the results
of present study by OP analysis and the uniaxial com-
pression test for the same BMG [19] as shown in Figure
4. We conclude from these observations that the pile-up
effect cannot be ignored in evaluating the hardness and
the stress–strain response of BMGs. Therefore, the
hardening exponent iterative procedure was employed
below to consider the effect of pile-up.

Ignoring the influence of the shear bands during
indentation and assuming the strain-hardening of
Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG to be isotropic, the
indentation representative stress–strain (rR � eR) can
be represented by

rR ¼
EeR; eR 6 ry=E

Ken
R; eR > ry=E

�
: ð9Þ

Following the pioneering study by Tabor [23], the inden-
tation representative stress rR can be obtained from the
mean contact pressure H as

H=rR ¼ CðeRÞ ¼ ð2=3Þ ð1� 1=nÞð1� tan a=3Þb
þ 1=nþ 3=4ÞðEa=4RryÞn
� �

; ð10Þ
where C is a function of the indentation representative
strain eR for a given material. According to Ahn and
Kwon [18], eR = 0.1 tanb � 0.1a/R. The boundary
between the elastic–plastic regime and the fully plastic
regime is determined by normalized indentation strain
Ea/ryR, and the value of Ea/ryR is approximately 40
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[24]. In the present study, all the values of Ea/ryR were
calculated to be < 40 as shown in Figure 3. Therefore,
the material is in the elastic–plastic regime under inden-
tation. Taking the initial value of the strain-hardening
exponent n to be 0.1, the value of n was modified in
the iterative calculation using the stress–strain equation
rR ¼ ken

R until the input value equalled the returned va-
lue. Then, the final value of n was achieved.

The iterative results of normalized hardness H/ry with
normalized indentation strain Ea/ryR are shown in
Figure 3. It can be observed in Figure 3 that the iterative
results agree well with the AFM results. In addition, the
final average iterative n is obtained as 0.055. Submitting
this value and a = 10.3� into Eq. (8), the n-DP-ECM
curve is also obtained in Figure 3. As be observed, the
trend predicted by the n-DP-ECM model follows closely
both the results of the iterative method and AFM, there-
by supporting the new model. Furthermore, the results
of indentation representative stress–strain relation by
the iterative method and OP analysis are shown in Figure
4, respectively. It can be seen that the iterative results are
in a good agreement with the uniaxial compression data
and the assumption of incompressibility may be respon-
sible for the slight deviation. These comparisons demon-
strate that our new n-DP-ECM model is satisfactory for
evaluating the hardness and stress–strain response of
BMGs considering the effect of pile-up.

In summary, spherical nanoindentation tests were
employed to characterize the hardness and indentation
representative stress–strain of Zr41.2Ti13.8Cu12.5Ni10-
Be22.5BM. By using the new modified n-DP-ECM model
and the iterative method, the hardness and indentation
representative stress–strain of this BMG in the elastic–
plastic regime were obtained, taking into consideration
the effect of pile-up. As a result, the iterative hardness
agreed well with the AFM results. Excellent agreement
was also obtained between the iterative results of inden-
tation representative stress–strain and the uniaxial com-
pression tests.
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