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Abstract 

Usmg the constltutwe equation of a rubber-hke materials given by Gao (1997), this paper mvestlgates 
the problem of a cone under tenslon of a concentrated force at Its apex Under consideration 1s the axial- 
symmetry case and the large strain IS taken mto account The stress strain fields near the apex are obtained 
by both asymptotic analysis and finite element calculation The two results are consistent well When the 

cone angle IS I80’, the solution becomes that of non-linear Boussmesq’s problem for tension case 
Key words large strain, rubber cone, asymptotic analysis, fimte element 

1. Introduction 
A typical problem m nonlinear theory of elastlclty 1s the determmation of stress and strain in a rubber 

cone acted by a concentrated force Gao and Llu (1995) gave a solution to &us problem for tenslon case 

based on the elastic law proposed by Gao (1990) When the cone angle 1s 180”) It becomes a rubber half 
space, the problem can be called nonlinear Boussmesq’s problem, which was analyzed for tension case by 
Slmmonds and Wame (1994) based on the elastic law used m Knowles and Stemberg (1973) As for the 
compression case of the problem, there are still no result pubhshed 

There are two mam obstacles m nonhnear elastic theory, one IS the geometry description of deformation, 
another 1s the constitutlve equation that must be as simple as possible but keep reasonable when strain 1s 
large Gao (1997) proposed another elastic law that reflected the response of materials to tension and 
compression, based on which, the proalem of a wedge under compression was solved by Gao (1998) 

In the present paper the problem of a cone under tension of a concentrated force IS analyzed based on 
the elastic law of Gao (1997) It IS found that the cone apex 1s m umaxial tension state, this IS similar to that 
solution obtamed by Gao and LIU (1995), however some different material behaviors governed by Gao 
(I 990) and Gao (1997) are revealed m this typical problem 

2. Basic Formulae 
A three-dlmenslonal domam of rubber material IS considered Let P and Q denote the positIon 

vectors of a materlal point before and after deformation respectively, XI (I = I, 2,3) 1s the Lagranglan 

coordmate Two sets of local triads are defined as, 

P, =*I&‘, Q, =ipl&’ (1) 
The displacement gradlent tensor is, 

F=Q, C3P’ (2) 

where P’ 1s the conjugate of Pl , 8 the dyadlc symbol The summation rule IS 
implied The right and left Cauchy-Green strain tensors are 

D=FT F, d=F FT (3) 
In which the superscript T denotes transposition D and d possess the same mvarlants such as 

Il=D E=d E, I_, =D-’ E =d-’ E (4) 
where E denotes unit tensor, denotes dual product Besides, a common used invarIant 1s the volume 
mflation ratio J , 

J=VplVp (5) 
where v* = (*1,*2,*3) (6) 
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(*,, **, *3) denotes the mlxed product of *I, *2, *3 

Gao (1997) proposed a stram energy per umt undeformed volume, 

lJ=a(I;+If,) 

where (I, n are material constants The Klrchboff stress IS 

o= 2 g = 2411”-‘E - If;‘D-2) 

Then the Cauchy stress IS 

(7) 

(8) 

T= J-‘F (I FT = 2nal-‘(I;-‘d-I”i1-ld-‘) 

The eqmhbrmm equation can be wrltten as 

(9) 

$(Vp rQ')=O (10) 

3. Mappmg Functions and Strain 
A cone before and after deformation 1s shown m Fig 1 (a), (b) respectively Two Lagranglan 

coordmates are taken such that (R, Q,O) IS spherical coordmate before deformation whde (r, 0, p) IS 

spherical coordmate after deformation We presume that the deformation near the apex can be described by 
the followmg mappmg functions, 

1 

R = r’@/({) 

@=g(O, {=&” ) o-<cf<c$o (11) 

#=rp 

Where aand p are posltlve constants to be determmed, f and g are unknown functions 40 IS the 

value of { on the cone surface Let 

PR =g=eR , Pe=g=Ree, PO =$=Rsm@?o 

Q, =T=er , @ Qs =-=reg, 
dB 

Q9, =a=rsmBP 
4 

Fig 1 Coordmates 

(a) Spherical coordmate before deformation (b) Spherrcal coordmate after deformation 

evidently, e, (I = R, 0, 0, r, 0, p) IS umt vector From (11) and (12) It follows 

P, =~=ra{[(l+P)f-aSf’]eR-a~g’ee) 

P&2 = 5 = r’+B-a (fk?R + fg’e@) 

(12) 

(13) 

Pp, =z=rl+flfsmgeo 
ap, 

(14) 
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Eq (14) can be Inverted to obtam 

1 

P’ = r-Pv-‘(fg’eR -ft~) 

Pe =ra-fl-‘v-‘(a&g’e~ +[(l+P)f-a@‘]es) 

PP = r-I-P(fsm g)-‘eo 

v=(l+P)fZg’ 

Usmg (13)-( 15), (2) and (3) we obtain 

d =rm2flvd2{ue, Be, +r”[a@-(l+P)JJ’](er O&g +eg me,) 

+r2a[a2<2u+(l+p)2f2 -2(l+P)C@“]ee @‘es} 

+rke2flzP2e, Be, 

(15) 

(16) 

(17) 

d-’ =r2PeZa{ueg @es -r”[a&-(l+P)ff’](er 8ee +eg @e,) 

+r2a[a2{2u+(l+/?)2f2 -2(l+p)@‘]e, Be,) 

+r2fi-2az2e, @eP, 

m which 

u=fQ+f2gQ z = fc-’ sm g 

From(4) - (6), (17), (18),‘(13) and (14) we have 

11 = r-%-2, ) I_~ = 4-2a cu + 3), J = ,2a-34-kI 

(18) 

(19) 

cm 

4. Coordinate Transformation 

In order to slmphfy the expression of d and d-’ we Introduce a new coordmate system (q, 4,~) m 

the vlcmlty of B = 0 , on the cross sectlon p = const , the coordinate lmes are shown m Fig 2 Then 

a2 rf=r(l+;@ +ye4 +5 + ) 
48 

(21) 

The Inverse expression of (21) and (11) can be wrltten as 

(22) 

Accordmg to (22) and neglectmg the high order terms, the base vectors m (q, <, p) system become 

then 

Q’l =er +a&@eg, Qt = q-‘-a(e,g -a<qne,) 

QP ,{-lq-l-ae 
(24) 

P 
The umt vectors along 9 and { lmes are 

ell =e). +a&e, eg = -a&, ieg 

the Inverse of (25) IS 

e, = eV -u{rlaeg , eg = eg +cx&jaeV 

(25) 

(26) 

Substltutmg (22) and (26) mto (17), (18) and (20), It IS obtamed 

d =qm2fl[uev @De,, -q”(l+/3)ff’(eV @et +eg Be,,) 

+q2a(1+P)2 f2ey @ee]+q 2a-2fiz-2ep, me, 
(27) 

(23) 

d-’ = ~,~~-~fl[ueg Beg +f(l+j)ff’(eq @et +eg Be,) 

+v2a(l+P)2 f 2e,l @e,]+q2b-2crz2e, Oep, 
(28) Fig 2 (4,~) coordmate 

Substltutmg (27), (28) mto (9), If we reqmre that both d and d-’ make contrlbutlon to the coefficient of 



52 Y C GAO and S H CHEN 

et @et , then the followmg condltlon IS obtamed, 

a=2@l(n+l) 

Further, the resultant force of s must balance the external load, so we have 

$(1+(r) rrr _ 1 
therefore 

p-L 4n 

2n-3 ’ 
a= 

(2n - 3)(n + 1) 

finally 5 can be written as 

r=2nar,-‘[Tev Be, +rfS(e,, Beg +eg Be,) 

+7p (wet Beg +Ye, Be,)] 

m which 
il=2(l+a) 

I 

T = v’-~“&’ 

s = -,‘-2n,zP-l(1+ P)fs’ 

w=vz[v-2”u”-‘(l+P)2f2 -(U+Z2)n-‘U] 

y =YZ[++-‘Z-2 -(u+$)n-lZ2] 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

5. Equdibrlum Equation and Solution 
In order to use equation (IO), the followmg relations for dominant terms are needed, 

(35) 

(36) 

% - - - a(1 + a)&-a-leg , 
&l 

3 = -a(1 + a){7ja-’ 
* 

ev ’ 2=-(l+a)qae,, z=eV 

% A9 A, _= _= ~ 0, ay 0, %=-et 

Besldes, Eqs (23) and (6) give 

VQ = ++2a5 

Substltutmg (32)-(36) and (24) mto (10) and neglectmg the high order terms, It 1s obtamed, 

ds+S=O 
d5 < 

*+l(w-Y)+a(l+a)tT+(1+2a)S=O 
d5 5 

(37) 

Let 40 denote the value of 6 on the cone surface, 00 the half angle of the cone apex, then we have 

g(<o ) = 00 (38) 

At the surface of the cone, traction free condltlon must be satisfied, so that at 4 = 60 It IS requrred, 

sjrO =O, “15, =0 (39) 

From the first of (37) and the first of (39), It IS concluded that 
SE0 (40) 

(40) results m 
f = f0 = const (41) 

Then 

u= fig’2, v=U+P)f& z = fog-’ sm g (42) 

Substltutmg (34) and (42) mto the second of (37), It follows 
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g”smg{l-(l+,0)2”-2f~“g’4Sn-2[(2n+l)g’2 +3A2]) 

-g’2[cosg-g+ ’ ~5g’slng]_(l+p)2”-2f04ng’3~~-2~~5 
A (*+P>2 
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(43) 

-g’5 cosg+(2n-l)g’2A2(A-g’cosg)]=0 

m which 

A = 5-l sing , B = g12 + A2 

At {=O wehave 

g(0) = 0 
(38) and the second of (39) can be combined to give, 

g’4p-1 q1+p)2-2nf{4” when g=@ 

(44) 

(45) 

(46) 
(45) and (46) are the two boundary condltlons for Eq (43) so that it can be solved numerically Eqs (43)- 

(46) show that If f. - g(r) IS a set of solution, then kfo - g(&- ,‘fl) 1s also a set of solution Therefore It 

IS sufficient to give the numerical calculation only for fo = I For 

n=2, fo=l, 00=1r/6, 7~14, n/2, the curves of g(r) are ” / 
/ 

shown m Fig 3 It can be seen that the curves of g(c) are nearly / ,,% 

straight hnes 
I’ 

/ 
Now, we should determine the relation of fo and the load F at the 018 

apex Let n denote the normal of the cross section r = const then by w 032 
integral we have 

F =2m2Jr nsmM9 0 16 
(47) 

E 

:Z;t$ 

= 4rmajo50 T &it = 4rma(l+ p)l-zn &-2n (1 - cos 00) eo=n/2 
0 

0 03 06 0.9 12 
or 

fo =r 4*~~l~cosBo)l-~(l-B~-~-~ (48) 

5 

Fig 3 Curvesof 5-g 

6. Fimte Element Calculation 
The incremental theory of total Lagranglan approach 1s adopted m the finite element calculation 

Under conslderatlon IS the axial symmetry case The mesh dlvlslon m the vertical cross section of the cone 
IS shown m Fig 4 In the R direction the cone 1s divided mto 50 layers and the size ratio of neighboring 
elements 1s 1 2 In 0 dlrectlon it 1s equally divided mto 8 layers The generatrlx length IS taken to be 1 5 

The material parameters are taken as n = 2 5, a = 15000 0, F = 3 0, O. = z/ 6 The calculated curve of 

R(r) and the theoretical curve from (11) for 0 = 0 are plotted m Fig 5 The curves of r - rrr for 0 = 0 

are shown m Fig 6 The shape of the vertical cross section near the apex after deformation IS shown m 
Fig 7 It IS shown that when r IS small enough, the numerical results are consistent with the asymptotic 

analysis For other parameters, for examples n = 2 0, a=l50000, F=30, @J =.~/6 or 00 =x/4, 

the curves are very slmdar to Fig 5 and Fig 6 so they are not plotted 

7. Concluslon and Dlscusslon 
0 The asymptotic analysis and finite element calculation revealed that when a cone IS tensloned by a 

concentrated force, the stress state near the apex IS m umaxlal tension The stress component rrr 
possesses a constant angular dlstrlbutlon This IS slmllar to that obtained by Gao and Lm (1995) 

l With the solution of Eq (43), the minor components of stress (&and #+’ ) can be determmed 
However for the same problem but based on another elastic law, Gao (1990), the minor stress 

component P, rBp cannot be determined near the apex Therefore, we conclude that the new 
elastic law, Gao (1997), can reflect the material behavior more exactly than the old elastic law, Gao 
(1990) 

l Eq (3 1) shows that n > 15 IS the precondltlon for the materials to endure a concentrated force This 1s 
consistent with the analysis given by Gao and Gao (1999) 
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Fig 4 Mesh dwslon of a vertical cross sectlon Fig 5 Curves of r - R 
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Fig 6 Curves of r - r”t 
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Fig 7 Shape of the vertical cross sectlon 

after deformation 
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