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Abstract In this paper, focusing of a toroidal shock wave
propagating from an annular shock tube into a cylindrical
chamber was investigated numerically with the dispersion
controlled dissipation (DCD) scheme. The first case for an
incident Mach number of 1.5 was conducted and compared
with experiments for validation. Then, several cases were
calculated for higher incident Mach numbers varying from
2.0 to 5.0, and complicated flow structures were observed.
The numerical study was mainly focused on two aspects:
focusing process and flow structures. The process, including
diffraction, focusing, and reflection, is displayed to reveal
the focusing mechanism, and the flow structures at differ-
ent incident. Mach numbers are used to demonstrate shock
reflection styles and focusing characteristics.

Keywords DCD scheme · Toroidal shock wave focusing ·
Spherical double Mach reflection
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1 Introduction

Shock wave focusing has been an interesting research area
for several decades. A small region of high temperature and
pressure around a focal point can be generated for various
applications. The explosion-like phenomenon will generate
blast that can interact with other waves, which may lead
to vortex generation, turbulence mixing and so on. Sod [1]
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studied cylindrical shock wave focusing numerically first
with the one-dimension model. Takayama et al. [2] inves-
tigated the stability of cylindrical shock waves travelling
in air experimentally. In 1989, Grönig [3] reviewed shock
wave focusing and pointed out that the focusing of cylindri-
cal shock waves is one of the research topics worth trying in
future. Jiang and Takayama [4] discussed the propagation of
the toroidal shock wave discharged from a coaxial annular
shock tube and revealed a special shock reflection. Hosseini
and Takayama [5] set up a vertical shock tube to visualize
the focusing of a toroidal shock wave of a Mach number 1.5.
But due to the difficulty arising from generating high qual-
ity toroidal shock waves, they did not carry out experiments
of higher Mach number cases, which are more interesting in
physics and important in practice.

Based on the CFD validation with the experimental re-
sults [5], the present work is devoted to numerical simu-
lations of toroidal shock wave focusing in the cylindrical
shock tube to explore further shock physics in focusing.
In the numerical simulation, the dispersion controlled dis-
sipation (DCD) scheme [6] is used to discretize the Navier–
Stokes equations for calculation, and then several cases are
carried out to examine the development of shock wave fo-
cusing and wave structures. From numerical results, the role
of the incident Mach number, the generation of spherical
double Mach reflection, the maximum pressure from fo-
cusing, and discrepancies between axisymmetric and planar
shock focusing are discussed in detail.

2 Problem description

The sketch of the toroidal shock wave focusing and compu-
tational domain are shown in Fig. 1, with the outer radius
D = 0.5 m and the inner radius d = 0.4 m. The toroidal
shock wave is generated, at first, from the annual shock tube,
and will diffract over the backward step after discharging
and then generate the diffracting shock wave travelling to-
ward the axis of symmetry. Finally, the diffracting shock
waves will focus on the axis of symmetry and generate high
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Fig. 1 The sketch of the toroidal shock wave focusing and computa-
tional domain with D = 0.5 m and d = 0.4 m

temperature and pressure in a small region. The flow state
is usually transient, but the flow properties have extraordi-
nary peak values and can be applied in medical and indus-
trial processes. Actually, the pressure and temperature on the
focal point appear as singular points in mathematics, and can
reach infinity neglecting viscosity. But taking into account
viscosity and dissipation pressure and temperature in the fo-
cusing points are finite. In numerical simulations, the grid
size may affect flow parameters at the focal point more or
less, but the flow structures induced by focusing will remain
the same.

3 Governing equations and numerical methods

In the numerical simulation, two-dimensional axisymmetric
Navier–Stokes equations for a perfect gas are solved, which
can be written as
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where Ev, Fv, and Sv denote the viscous flux and viscous
source corresponding to E, F, and S, respectively. Primitive
variables in the unknown U are density ρ, velocity com-
ponents u and v, and total energy per unit volume e. Fluid
pressure is p and the equation of state for the perfect gas is
given by
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where γ , the specific heat ratio, is taken as 1.4.

The dispersion controlled dissipation scheme and the
central difference are respectively applied to discretize the
convection terms and the viscous terms. The DCD scheme
has been demonstrated to be capable of predicting complex
flow fields, such as shock wave interactions, without non-
physical oscillations and any need for artificial viscosity.
The finite difference equations of the axisymmetric govern-
ing Eq. (1) discretized using the dispersion controlled dissi-
pation scheme are given in semi-discrete form as follows:
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In the equations presented above, the (.)+ or (.)− superscript
signs denote vector flux splitting according to the Steger–
Warming method [7]. I is a unit vector, β = �t/�x , and
�A and �B are vectors that consist of eigenvalues of ma-
trix A and B, respectively. The time-marching integration
was performed using a Runge–Kutta integration method of
second-order accuracy. As the initial condition, the toroidal
shock wave is travelling in the annular shock tube and the
gas in front of the shock wave surface is at rest. As bound-
ary conditions, no-slip and adiabatic conditions are used on
the solid wall and free stream inlet and outlet flow are used
on the two ports of the shock tube.
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Fig. 2 Interferograms of toroidal shock wave focusing for an incident
Mach number of Ms = 1.5. a Experimental result; b numerical data
with viscosity; c numerical data without viscosity

4 Solution verification

To validate the numerical method used in the present simula-
tion, the toroidal shock wave focusing for an incident Mach
number of Ms = 1.5 was computed. Numerical interfero-
grams were constructed from the numerical data by inte-
grating the density of the flow field [8] and are compared
directly with the experiment [5], as shown in Fig. 2, where
the experimental result is in the left part, the numerical data
with viscosity in the middle and that without viscosity in
the right. The figures show the wave structure when the im-
ploding shock wave is up to focus on the axis of symmetry.
From the figures, it can be observed that not only the num-
ber of fringes but also the distribution of individual fringes
are identical, so it can be concluded that the code is credible
and can be used to investigate the shock wave focusing. Near
the solid wall the fringe number in the inviscid case shown
in Fig. 2c is larger than that of the experimental result, and
taking into account viscosity, the departure will be improved
greatly, see Fig. 2b.

5 Numerical results and discussion

In the following discussion, several issues will be empha-
sized and analyzed in detail. The first one is the process of
the toroidal shock wave focusing, from which wave struc-
tures and spacial flow states are observable. The second is
the role of the incident Mach number in shock focusing and
it is a key parameter for diametrical changes in shocked
flows. The third is the converging process of diffracting
shock waves, in which the Mach number of the diffract-
ing shock waves is increased. It is demonstrated that the
process plays a key role in shock focusing. The last one is
in the high Mach number case in which the shock focus-
ing will generate two effective focal points and a strong su-
personic jet that impacts on the Mach stem and renders it
convex.

5.1 Toroidal shock wave focusing

The second case, for a Mach number of Ms = 4.0, is simu-
lated and the process of the toroidal shock wave focusing is
plotted in Fig. 3. In this figure, density contours are shown
in the upper half and the pressure contours in the lower half.
The toroidal shock wave diffracts over the backward step
after discharging from the annular shock tube to the cylin-
drical chamber and implodes toward the axis of symmetry
as shown in Fig. 3a. It can be observed that the wave front
of the diffracting shock wave is an arc and there is a short
Mach stem close to the backward step. Meanwhile, a sec-
ondary shock wave develops behind the diffracting shock
wave because of the locally developed supersonic flow. The
part of the wave front reaching the axis of symmetry first is
not the Mach stem, because the wave front is curved much
more toward. After focusing, the shock wave reflects from
the axis of symmetry, as shown in Fig. 3b. The pattern of
the reflected shock wave is, at first, regular reflection, but
with the lapse of time it quickly changes to Mach reflection
and a short Mach stem occurs. Meanwhile, the shock wave
reflected from the axis of symmetry, like a cylindric blast
wave generating from the high pressure induced by focus-
ing, propagates to the outside. From Fig. 3b to 3c, the Mach
stem is getting longer and longer, and the part near the axis
is curved forward and becomes convex. It is believed that
the blast wave behind drives out the special Mach stem. The
wave structure, called spherical double Mach reflection in
some papers, appears to be self-similar in Fig. 3c and 3d and
behind the convex Mach stem there are very complex inter-
actions among shock waves, slip lines, and eddies.

5.2 The role of the incident Mach number

To investigate the role of the incident Mach number, four
cases are computed by varying the incident Mach number.
Isobars and isopycnics of the numerical results of shock
wave focusing for the incident Mach numbers of Ms = 2.0,
3.0, 4.0, and 5.0 are plotted in Fig. 4, respectively. From the
figure it is observable that there are great differences in the
wave structure. For the case of Mach number 2.0, the single
Mach reflection develops and as the incident shock propa-
gates, the Mach stem becomes longer and longer, and ap-
pears nearly planar, as shown in Fig. 4a. When increasing
the incident Mach number, the Mach stem becomes convex
gradually and the spherical double Mach reflection appears
more and more obvious to be seen from Fig. 4b to 4d. A
new upstream shock wave, being vertical to the axis and like
a shock disk, develops behind the Mach stem, and its edge
sucks in the low pressure core of the vortex ring, as shown
in Fig. 4c and d. It is concluded that the Mach number of the
incident toroidal shock wave plays a vital role in the wave
structure development of focusing.

It seems that the spherical double Mach reflection is a
distinctive phenomenon in focusing. The question is what
is the reason for the convex Mach stem on generation. From
the numerical results it is found that behind the curved Mach
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Fig. 3 Isobars (lower half) and isopycnics (upper half) of toroidal shock wave focusing for Ms = 4.0: a 59 µs; b 82 µs; c 114 µs; d 158 µs

Fig. 4 Isobars (lower half) and isopycnics (upper half) of shock wave focusing for various incident Mach numbers: a Ms = 2.0, 219 µs; b
Ms = 3.0, 181 µs; c Ms = 4.0, 158 µs, and d Ms = 5.0, 121 µs

stem, a region of great particle velocity exists along the axis
of symmetry. To show this, the velocity in x-direction on
the axis of symmetry and the line of x = 1.9 are shown
respectively in Fig. 5 when the spherical double Mach re-
flection just occurs as shown in Fig. 3c. Figure 5 shows that
the peak velocity appears at the position of r = 0.0 and
x = 1.9, where the local Mach number can reach values
as high as 11.3. Along the line of x = 1.9, the velocity
in x-axis direction increases linearly and reaches its maxi-
mum value at the wave front. So, it can be concluded that
shock focusing induces a jet around the axis of symmetry,
and the jet then impacts on the Mach stem and renders it
curved. Finally, the spherical double Mach reflection devel-
ops. To support this explanation, the distribution of the ve-
locity in x-direction along a vertical line behind the Mach
stem is shown in Fig. 6 when the Mach reflection just occurs
as shown in Fig. 3b, and a similar velocity profile for the low
incident Mach number of 1.5 is also displayed in the same
figure. Obviously, there is a great velocity gradient near the

axis in the high Mach number case, which implies a strong
supersonic jet exists here. The jet impacts on the Mach stem
ahead and renders it convex. The interaction generates an in-
flection point, which is the second triple point for the wave
system.

The time history of the maximum pressure along the axis
of symmetry for incident Mach numbers of (a) 2.0, (b) 3.0,
(c) 4.0, and (d) 5.0 is recorded and shown in Fig. 7. The
figure shows that as the incident Mach number increases, the
peak pressure on the axis increases rapidly. For example, if
the Mach number of the toroidal shock wave changes from
2.0 to 5.0, the post-shock pressure behind the wave front
increases by 6.4 times, but the peak pressure increases by
15.5 times. Therefore, the toroidal shock wave focusing is
an effective way to get high pressure and temperature.

In Fig. 7, some unusual phenomena are worth to be
pointed out. There are two pressure extrema on the axis of
symmetry for high Mach numbers. The two pressure ex-
trema indicate two effective focal pressures: The first one is
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Fig. 5 The velocity distribution along the axis and the line x = 1.9 for
Ms = 4.0

Fig. 6 The velocity distribution in the x-direction just behind of shock
wave front for Ms = 1.5 and 4.0

located near the wall at the axis of symmetry and the second
is a certain distance away from the wall, in front of where
the diffracting shock wave arrives first. Theoretically speak-
ing, the pressure on the axis depends on two factors: the
incident shock angle and the incident Mach number. Near
the wall, the incident Mach number is zero and the incident
Mach number is higher than the adjacent shock because of
the Mach stem induced by overexpansion. Furthermore, be-
fore this focal point, the velocity is in negative x-direction
and then stagnated here by the wall. So near the wall the
first focal point is generated. The second focal point is lo-
cated in front of the first arriving point, from where the in-
cident shock angle increases gradually from zero and the in-
cident Mach number also ascends along the x-direction. In
the beginning the higher Mach number can offset the bigger
incident angle excessively and generates a higher pressure.

Fig. 7 The time history of the maximum pressure profile for incident
Mach numbers of Ms = 2.0, 3.0, 4.0, and 5.0

Fig. 8 The pressure on the two effective focusing points for Ms = 4.0

But because the angle increases more and more rapidly, at a
certain point the effect of both the factors is opposite com-
pletely and the pressure reaches its peak. So the peak point
is the second effective point that is located a little in front of
the first arriving point.

The pressure on the two effective focal points is shown
as function of time in Fig. 8. Both the pressures reach their
peak value when the shock wave arrives, and then decreases
rapidly. The pressure pulse lasts only a few microsecond
but can reach a level being hundred times higher than the
pressure in front of shock wave front. It is also noted that
if the Mach number is less than 4.0, the second focusing
pressure is higher than the first. When the incident Mach
number increases to 5.0, the bigger focusing pressure ap-
pears at the first focusing point, as shown in Fig. 7. So, there
must be a threshold Mach number between 4.0 and 5.0, at
which the position of the bigger focusing pressure alters. In
conclusion, increasing the incident Mach number affects not
only the focusing pressure, but also the focal points that may
move from an uncertain point to a fixed point.
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Fig. 9 Isobars (lower half) and isopycnics (upper half) after focusing
for Ms = 4.0: a axisymmetric flow, 158 µs; b planar flow, 169 µs

Fig. 10 The historic maximum pressure for Ms = 4.0 in the axisym-
metric and planar flow

5.3 The axisymmetric shock focusing

To explore the mechanism of the axisymmetric shock focus-
ing, a two-dimensional planar shock focusing is also simu-
lated. During the imploding process before the focusing the
flow structure is almost the same as the axisymmetric case.
But after focusing, the flow structure is quite different, as
shown in Fig. 9. Obviously for the same incident Mach num-
ber 4.0, there is no spherical double Mach reflection in the
planar flow. So it can be deduced that the maximum pres-
sure on the plane of symmetry must be lower to generate
the supersonic jet, and a comparison of the historic maxi-
mum pressures for two cases is demonstrated in Fig. 10. The
figure shows that the two peak pressure values in the pla-
nar case are both much lower than the corresponding focal

Fig. 11 Mach number of diffracting shock wave for Ms = 4.0 when
converging inside

values in the axisymmetric case. The difference between
the two cases must be generated before shock focusing. So
the diffracting shock wave Mach number near the backward
step during the diffracting shock wave implodes toward the
axis is recorded, as shown in Fig. 11. Before toroidal shock
waves diffract, the Mach number is the incident Mach num-
ber 4.0. Once the diffracting process starts, the Mach num-
ber drops down to about 1.5 in both cases. During the im-
plosion, the diffracting shock wave in the two cases behaves
differently. In the axisymmetric case, the Mach number in-
creases more and more rapidly and finally exceeds the in-
cident one. However, in the planar case, the Mach number
is almost constant before focusing, being equal to the value
at the beginning of the diffraction. This indicates that the
accelerating process in the axisymmetric case can overcom-
pensate the decreased Mach number induced by the diffrac-
tion, while in the planar case there is no accelerating process
and the diffracting shock wave Mach number keeps close
to 1.5. In other words, the diffracting and accelerating pro-
cesses influence the focusing oppositely. The diffracting pro-
duces the diffracting shock wave that implodes, but reduces
the Mach number perishingly. The accelerating occurs in
the axisymmetric case when the diffracting shock wave im-
plodes, which is the key factor to generate effective shock
focusing.

6 Conclusions

From the discussion above, the numerical investigation can
be summarized as follows: The toroidal shock wave focus-
ing is an effective way to get high pressure and tempera-
ture pulses being in a microsecond magnitude. The converg-
ing process of diffracting shock waves, which increases the
Mach number of the diffracting shock waves, plays a key
role in shock focusing. In the high Mach number case the
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shock focusing will generate two effective focal points and
a strong supersonic jet that impacts on the Mach stem and
renders it convex. The process induces a spherical double
Mach reflection. The very complicated interactions among
shock waves, contact surfaces and eddies are observable in
the spherical double Mach reflection that needs more future
work to investigate.
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