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A B S T R A C T :  Extended horizontal cracks have been observed experimentally in a 
vertical column of saturated sand when a flow of water is forced to percolate upward 
through it. This paper provides a theory for this phenomenon. It will be shown 
that the presence of inhomogeneity in permeability along the length of the column is 
essential for such cracks to develop. It will also be shown that small initial inhomo- 
geneity may be magnified through the transport of the finer component of the sand 
by percolation. Under certain conditions liquefaction takes place at a section of the 
sand column causing a crack to initiate and grow there. This theory is found to be 
in good qualitative agreement with the experimental findings. 

K E Y  W O R D S :  liquefaction, cracks, percolation 

1 I N T R O D U C T I O N  

In two recent papers experimental  observations on the formation of extended hori- 

zontal cracks in vertical columns of saturated sand contained in circular cylinders have 
been reported I1'2]. In [1] the cylinder was subjected to an axial impact.  In [2] a steady 

flow of water was driven upward through the column of sand sitting on a perforated rigid 

diaphragm. In both cases care was taken in preparing the sample by feeding wetted uniform 
sand continuously into a column of water to avoid intentional stratification. However, small 
inhomogeneity still existed. 

In the li terature the existence of "water film" in sand bed containing an impermeable 

layer was first suggested by Seed [31 in a t tempt ing  to explain slope failures observed in earth- 

quakes. Later,  Fiegel and Kutter[4] performed a centrifilge shake table test  to demonstrate  

the formation of water films in layered sand. More recently, Kobusho [~] performed shake 

table tests using sand samples containing a seam of nonplastic silt about  4 m m  thick and 

showed tha t  a water  film was formed underneath the silt layer. In this case the column was 

subjected to horizontal shocks simulating earthquakes. In the present paper  we shall use the 

term crack rather  than water film as at tention will be focused on the condition of growth of 
cracks. 
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Both papers [1] and [2] find that  liquefaction was a necessary condition for crack initi- 

ation and growth. In [1] the entire cohmm of sand was liquefied following the impact. In [2] 

liquefaction took place locally as the flow rate was gradually raised. They found that  cracks 

appeared only when the range of size distribution of sand grains of the specimens was broad. 

They also showed that  when a horizontal layer of fine sand was intentionally sandwiched in 

the sand column a crack would develop there. In addition, [2] showed analytically that  the 

crack should be located just beneath the fine sand layer. 

This report  is a follow-up of the above two papers. It reports progress on the study 
of the mechanism of the formation of such cracks on the basis of [1] and [2]. It  will be 

shown that  inhomogeneity of grain size distribution along the length of the sand column is 

an essential precondition for cracks to initiate and grow. The t ransport  of sand composed of 

the fine grain component  by percolation tends to cause further stratification that  aggravates 

this inhomogeneity. While liquefaction is a necessary condition for the formation of cracks, 

it is by no means the only condition or a sufficient condition. In this report we shall develop 

a theory based mainly on the experimental  results of [2]. Application of this theory to the 

case discussed in [1] will be presented in a separate paper. 

Figures 1 and 2 are taken from [2] where J represents the measured excess pore pressure 

gradient (with a change in sign, in the present notation) and )" is the so called liquefaction 

index defined as the ratio of the excess pore pressure to the effe(:tive compressive stress. 

Y greater or equal to 1 indicates liquefaction. The set of curves in Fig.1 describes J as 

a function of height when the driving velocity of water is gradually increased. During the 

experiment this velocity was increased so slowh" that  inertia effects were negligible. 
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Fig.1 Pressure gradient versus x 
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Fig.2 Liquefaction index versus x 

(Ua = 0.06 mm/s, Uz = 0.11 mm/s, U3 = 0.13 ram/s, [74 = 0.17 mm/s) 

The points marked by a circle in Figs.1 and 2 designate the position where a crack 

formed in the experiment.  We note that  in Fig.2 the circled point lies oll the line Y = 1, 

confirming the assertion that  liquefaction is a necessary condition for the formation of a 
crack. 

2 F O R M U L A T I O N  O F  A T H E O R Y  O N  T H E  I N I T I A T I O N  A N D  I N I T I A L  

G R O W T H  O F  H O R I Z O N T A L  C R A C K S  

The following simplified form of two-phase flow equations will be used. These equations 
are based on the assumption that  the flow is one dimensional and the wall friction and 

inertia effect may be neglected. Only the simplest form of interaction between sand grains 

and water, namely Darcy 's  law, is taken into consideration. 
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where t is the time, x the coordinate pointing upward with origin at  the bo t tom of the sand 

column. r is the porosity which, for the present, is assumed to be a known function of x, 

a the effective compressive stress, u the pore velocity of water, us the velocity of sand, p and 

Ps are the density of water and sand grains, respectively, g the gravitational acceleration. 
The permeabili ty k(r will be regarded as a sensitive function of e. For the case studied in 

[2] us can be set to zero. The first two mass conservation equations can then be integrated 

to yield 
c(x)  = v (2) 

The integration constant U obviously is the flow rate of water per unit cross sectional area 

of the sand column. Integrat ing the other two equations using the boundary conditions tha t  

p and a are both equal to zero at x = H ,  where H denotes the height of the sand column, 
then we have 

p = pg(H - x) + U k(~) a = (Ps - P)g (1 - E)dx - U k(~) (3) 

The second te rm in either of these equations expresses the excess pore pressure driving the 

percolation. The first te rm in the second equation represents the effective weight, the weight 

of the sand minus buoyancy. In the absence of wall friction the liquefaction takes place where 

a = 0. This is identical to the condition that  the liquefaction index Y defined as the ratio of 

the excess pore pressure over the effective weight is equal to unity. The problem of finding 
whether or not a crack will form is tantamount  to establishing whether or not a root x of 

the following equation exists between 0 and H,  i.e. 

UF( ) = 

where 

(4) 

jfx H jfx H dx F(x)  = (Ps - P)g (1 - e)dx G(x) = k(e) (5) 

In looking for the root, an additional condition must be satisfied. This condition is imposed 

by the physical requirement that  the sand column be sitting on the rigid diaphragm so that  

the effective compressive stress a at x = O is greater than zero, i.e. 

F(O)/U > a (0 )  (6) 

Since the integrands in both  integrals are positive, both F ( x ) / U  and G(x) are decreasing 
functions of x. They have a common intersect with the x axis at x = H and the intersect 

of F ( x ) / U  with the ordinate (Fig.3) lies above that  of G(x). .  Clearly Eq.(4) does not have 

a root for small U. 
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Fig.3 Liquefaction and crack development 

To be more specific we assume that s is nearly equal to a constant ~o. Then we can 

write 

F(x) = (p.~ - .)(1 - eo)(H - x)g (7) 

However, as a sensitive function of e, k(c) cannot be treated as a constant. Physically 

we expect k to increase (or decrease) significantly for a slight iucrease (or decrease) in e. 

To look at the dynamics of crack initiation and growth in detail, let us consider cases 

where 
k ( e ) = k 0  for 0 < a t < x 1  or x . 2 < _ x < H  

k = k 0 + ~ k  for :cl < x < x 2  A k > O  

Figures 3(a) and 3(b) illustrate the functions F ( x ) / U  and G(x)  for which a layer more or less 

permeable is respectively sandwiched at x / H  = 0.7 ,,~ 0.8. It is seen that increasing U simply 

makes the straight line representing F ( x ) / U  rotate anti-clockwise around the point (H, 0). 

For the case of a less permeable layer a state of liquefaction is first reached at x / H  = 0.7 as 

U increases slowly to reach a critical value Uo, Fig.3(a). For the case of a more permeable 

layer the scenario is quite different. Once liquefaction takes place, the liquefaction region 

extends throughout the entire sand cohmm from x / H  = 0.8 to 1. Fig.3(b). 

Figure 3(c) illustrates the case for which a layer of less but continuously varying per- 

meability is sandwiched. In this case a state of liquefaction is first reached at a cross section 

somewhere above x / H  = 0.7 but less than 0.8. We note the resemblance between the 

theoretical curve representing the slope of G(:r) and the corresponding experimental curve 

at the points marked by" a circle (Fig.1 and Fig.3(c)). 

Next we address the problem of initiation and growth of a crack. Obviously liquefaction 

by itself does not necessarily" mean crack formation. In order for a liquefied section to become 

a crack, a layer of water has to be formed to fill the crack. In the case of small k discussed 

above, this requires an increase of inlet flow rate Uc from the first, at)pearance of liquefaction 
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to a larger Uc + 5U. The extra flow rate 5U supplies the amount of water needed to sustain 

the opening up of the crack. In fact the crack opening velocity is exactly equal to 5U. At 
the same time this extra flow rate drives the column of sand above x / H  = 0.7 to move as 
a rigid body with velocity equal to the crack opening velocity, without altering its previous 

state of percolation. The relative percolation velocity in this column remains to be Uc. 

3 G R O W T H  O F  I N H O M O G E N E I T Y  A L O N G  T H E  L E N G T H  O F  T H E  S A N D  
C O L U M N  

Figure 1, showing the experimentally observed excess pore pressure gradient along 

the length of the column measured at different flow rates, indicates that  the permeability 
varies along the length of the column. This set of curves is characterized by two features. 
First, the permeability tends to decrease in a general way as x increases. Second, initial 
inhomogeneity in permeability along x persists and may even be amplified as time increases. 
Since crack appears where the permeability is close to its minimum, the experimentally 

observed inhomogeneity in permeability both in space and time is a question deserving 
further examination. 

Experimentally when the grain size range of the sand is sufficiently narrow, cracks do 
not form. They form only when the grain size range is broad and contains fine grains. These 
observations lead to the view that  the finer grains in the latter case may be flushed away by 
the percolating water. This will have two consequences. First, the initial porosity will be 

altered. Second, the percolating water becomes turbid. Both factors lead to modification of 
permeability in time and space. Hence the answer to our question lies in properly describing 

the transport  of these fine grains and its effect on permeability. 
Although a full description of this process is not available, a simple empirical model 

can be devised to explain qualitatively the main features observed experimentally. 
An eroding turbid percolating flow through a porous sand can be described in terms of 

a three phase flow in the following manner. In addition to porosity c(x, t) we define q(x, t) 
as the volume fraction or specific volume of sand carried in the percolating fluid. We define 
Q(x, t) as the specific mass of sand lost to the percolating fluid. Then we have the following 
three mass conservation equations 

O(e - q)p O(e - q)pu + 
Ot Ox 

Oqp~ Oqp~u OQ 
Ot Ox Ot 

0(1 - e)ps OQ 
Ot Ot 

and 

- 0  

(8) 

Next, we simulate the erosion/deposition process using the following relations 

) Ps Ot - T -~ - q  if 9_p~ <_ O~(x.._~)p~ 

OO 
- - - -  < 0 otherwise 
Ps Ot - 

(9) 

k = k(E, q) 
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where the first term on the right side of the first equation shows how the sand is being 

transferred to water. The second term describing deposition places a limit on the amount  

of sand that  can be carried in the fluid. Q~(x) is the maximum amount ()f sand available 

that  can be washed away from a unit volume element at x. For simplicity Q~(x) is assumed 
to be given and independent of the flow rate and the state of sand. T and u* are empirical 

constants. A is a small parameter ,  employed to obtain an asymptot ic  solution, k(c,q),  the 

permeability, is now assumed to be a fast varying or sensitive function of q as well as c 

k(c, q) = koe -aq+3z 1 << ,3 << o (10) 

We let '3 << a in order to make k more sensitive to q than E. Equations (8) and (9) form 
a closed set of equations describing the kinelnatics of the three phase system. They will be 

solved subject to the following initial and boundary conditions 

C(x,O) = Co(X) q(x,O) = 0 O(x,O) = 0 
(11) 

c(O,t)u(O,t) = U ( t )  q(O,t) = 0 

The three mass conservation equations then yield 

(9 
= z ( ~ , t )  - c o ( x )  

Ps 

r t)u(z, t) = U(t) (12) 

The first equation in (9) becomes 

cOq Oqu Oc (13) 
CO--[ + O~" - a t  

) cOt T ~** - q (14) 

Equations (12), (13) and (14) together with the initial and boundary conditions (11) form a 

complete set of equations. The asymptot ic  solution can be obtained in the usual manner  as 

,,(z,t)- u(t) L'U(r)d,. +0(:,2) 
Co(x) Tu*cs(x) 

A 1 /oot c(x, t) = co(x) + Tu*co(X) U(v)dT + O(A 2) 

Q(x,t) _ :, 1 fo' p, Tu*eo(X) U(v)dT + O(A 2) 

(15) 

The calculation of q is somewhat more complicated. The zeroth order term in q is 

clearly equal to zero. The first order term ql (x, t) satisfies the following equation 

Oql U(t) COql U(t) dco(x) U(t) 
O--t- + CO(X) COX ql 2 - -  - (16) Co(X ) dx Tu*co(z) 

of which the characteristics satisfy the following equation 

dx U(t) 
- ( 1 7 )  

dt co(X) 
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Hence the characteristics relating x and t are implicitly given by 

/: /o t /o r = U(T)dT eo(~)d~ = U(T)d~- (18) 
0 

The first set of curves based on the parameter xo gives characteristics originating from the 

x axis. The second set of curves based on the parameter to gives those originating from the 
time axis. Integrating along a characteristic originating from the x axis, x = x(xo, t), we 

obtain a formal expression for ql (x, t) 

~ Joot U(v) dr176 dT} ~o t U(~-) ql(x(xo,t),t) = e x p  Eo2(X ') dx' eo(X') 

. e x p { _  fo" U(T') dr dT,}d T 
c2(x ") dx" (19) 

In this expression x -- x(xo, t) is the characteristic originating from Xo between 0 and H.  

Making use of Eq.(17), we obtain 

T_~ j x de ql(x) = r o r (20) 

The gradient of the excess pore pressure pe is given by 

Ope u(t) psu(t) o~ (21) 
P g J  - o---x - k (e ,  q----) + (ps - p)gq + ~2 (x,  t) Ot 

As k varies with ~ and q in an exponential manner, the first term on the right hand side of 

(21) dominates. Hence 

J ~ pg~(e,q)U(t) _ U_~(t)exp~aAq l p g ~ ~  ~ -/3[So(X) + AE1]} ~ U(~)exp[a,kqlpg~o -/~eo(X)] (22) 

To show how J varies with x and t according to (21), we assume U(t) = Uo, namely a 

constant, and 
~o(~) = 0.25(1 - 0.1 c o s 3 ~ )  ~ = x /g  (23) 

ql(~) along characteristics can then be cal- 
culated using (20) and is shown in Fig.4 for 

~o = 0, 0 .1 , . . . ,  0.9. The corresponding char- 
acteristics are shown in Fig.5. We find ql (~) 

'a t  a given time in the following manner. At 

time tUo/H we draw an horizontal line in 
Fig.5. The intersection of this line with the 
~o = 0 characteristic locates a ~ (note that  

= ~(~o,0)). These two values together 
determine the value of ql (~) from Fig.4. Re- 
peating the same procedure for other val- 
ues of ~o we find all values of ql (~) for this 
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part icular  time. To obta in  ql (() for smaller values of (, we note tha t  all characterist ics 

originating from the t ime axis are const ructed  by simply displacing the characterist ic  for 

~0 = 0 along the t ime axis (normalized to tUo/H in Fig.5) by appropr ia te  amounts .  Hence, 

the initial por t ion of the q-( curve for (0 = 0 
0.30 

is shared by all q-( curves. The character-  

istic for (o = 0 reaches the top of the sand 

column at t = t m  which in our numerical ex- 

ample is tmUo/H = 0.25. For all t ime greater  

than  tin, on the first order of approximat ion,  

e = e0(~), and the dis tr ibut ion of q along x 

no longer changes with time. The first or- 

der pe r tu rba t ion  in q in the dimensionless 

form Tu*ql(x)/H at tUo/H = 0.1 is shown 

in Fig.6. It  is not  difficult to  see tha t  for an 

exact  solution, our present model would yield 

(24) 
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Finally, for aAH/Tu* = 0.3 and /~  = 2, 

Ko = koe ~  the reduced excess pore pressure gradients,  pgJ/KoUo, for tUo/H = 0 and 

0.25 are shown in Fig.7. Compar ing  this figure with Fig.1 we conclude tha t  with appro- 

priate choice of  parameters  the theoretical  curves do reproduce the main features observed 

experimentally,  namely  J tends to increase with some waviness as x increases. 
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Fig.7 Reduced J for initial and large t 

Consider now the case tha t  l iquefaction first takes place at some point  (xc, to). Since 

the effective stress is given by (Cf Eq.(3)) 

q) dx [ n  dx H (1 - ~)(p~ - p) (e  - - U 
a(x,t) = ~. g E Jx k(r 

We have, at  Xc and tc 

f 
H g 

x t c ,  c 

(1 - c)(p~ - p)(r - q)dx - u f  H dx 
J~c,tc k(c,q) 

- -  - 0 ( 2 5 )  
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Taking the t ime derivative of a for fixed x, we obtain 

~ -  ~=~: i - -- -- " ~ dx~OkOe~kO_e~+~qqO_tOkOq) Oa = H 0 ( 1 - e ) ( p ~ - p ) ( g - q ) d x + U  
= ~,t~ ~ g  e ~,t~ 

oz)~U2H f l d~ 1 ( Tu* ,~,Oql/eo(()) 
Tu* (o,t) k e0(~) 1 - --~-e0(~) ~ -  (26) 

for t less than t H where tH is the t ime required for the characteristic start ing from x = 0 

to reach the top of the sand column. The lower limit of the definite integral ~(0, t) is the 
value of ~ on this characteristic at the t ime when a state of liquefaction prevails at x = xc. 

We note that  q/eo(~) is much smaller than 1, so that  for sufficiently small value of the 
dimensionless parameter  Tu*/H, the right hand side of (26) is always negative. This means 

tha t  under such a circumstance, once a state of liquefaction is reached at a cross section of 

the sand column, a crack will immediately form and grow there. Unlike the case where no 

t ranspor t  of sand is permit ted,  the crack grows even when the flow rate is kept constant. 

This is because the total  force lifting the sand column above the liquefied section increases 
with the increase in ql in t ime .  

We also note that  t ranspor t  of the fine component  of sand tends to increase q along x in 

a general way and q is the principal cause for the decrease in permeability. Now, according 

to (25), the smaller the permeabili ty the closer xc will be to the top of the sand column. 
Hence the crack is more likely to be closer to the top rather  than the bo t tom of the column. 

This is in full agreement with the experimental  observations of both [1] and [2]. 

4 C O N C L U D I N G  R E M A R K S  

A theory is provided in this report  to explain the mechanism of the formation of 
extended horizontal cracks in saturated sand. It  is shown that  unevenness in permeabili ty 

along the length of the sand column is essential for cracks to develop. Small initial unevenness 

in permeabili ty or stratification can be amplified by percolation which t ransports  the finer 

component  of the sand through an erosion/deposition process. This process eventually 

brings abou t  a condition conducive to liquefaction and crack formation. This is apparently 

what was observed in the experiments reported in [1] and [2]. 

The crude erosion/deposition model presented in (9) does appear  to catch the main 

features of the phenomenon. To obtain more quantitat ive results, further work clearly needs 
to be done. 
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