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On the evolution of simple shear in saturated soils
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SUMMARY

Development of shear bands in saturated soils is a multi-stage process based on the theoretical and
numerical investigations in this paper. The soil is initially in homogenous shear strain state, and the
instability can be characterized by a dimensionless number D: The inhomogenous distribution of shear
strains appears when D > 1; and the shear band will initiate and develop gradually. Numerical solutions
show that only single shear band that is finally formed in the central region of the specimen even
several disturbances (distributed along the specimen) appear in the beginning. Copyright # 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Shear bands occur quite frequently in saturated soils under dynamic or static loading conditions
and have attracted considerable attention for many years. Among the wealth of literature on
this subject, we mention the classical works by Rice, Vardoulakis, Ottosen and Runesson et al.
[1–6]. The necessary conditions for discontinuous bifurcations have been established by their
works. Ottosen and Runesson et al. [3, 6] presented the analytical results that include more
general elastic–plastic models. The forming of the shear band in saturated soils may be described
as follows. The strain or strain rate is significantly increased first, resulting in the build-up of
high pore pressures and the decrease of the effective stresses. Under these conditions, the
deformation of the saturated soils may behave very unusually. However, why may shear bands
form in uniformly deformed saturated soils? How does the shear band evolve in saturated soils?
All these questions are of great importance and interest in recent years [7–12]. Now it has been
understood that the evolution of the shear bands in saturated soils is self-organized [8].

This paper aims to investigate the evolution of shear bands in saturated soils. Three stages are
discussed respectively.
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2. GOVERNING EQUATIONS AND ANALYSIS

Although some criteria of instability have been obtained, these criteria cannot describe the
temporal and special structure of the shear deformation i.e. the evolution. Therefore, a one-
dimensional model of simple shear of saturated soils is presented as follows for studying the
evolution of shear bands [8]
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in which p is the pore pressure, Er is the unloading modulus, K ¼ rwg=k; rw is the density of
water and k is the Darcy permeability, g is the Earth gravity acceleration, C1 is a material
parameter, r is the density of saturated soils mixture.

The complexity of the equations may be twofold. Firstly, the second equation in (1) is of the
reaction–diffusion type, with the non-linear coupling source term C1Ert’gg: The first equation in
(1) may lose its hyperbolic properties at the peak of the stress–strain path f ðxÞ: Because of the

vanishing wave speed c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
’ff ðxÞ=r

q
; this may cause a strong discontinuity near the loading

boundary which may be one of the possible mechanisms about the concerned shear location.
Secondly, scaling the governing equations properly is of crucial significance in the analysis of the
shear band in saturated soils, because different scales of time and size involved in this
phenomenon. Obviously the half width of the band is much less than the size of the specimen L:
More importantly, there are several time scales, such as 1=’ggn; L=ðtn=rÞ0:5; Lm=rwgk; etc.
characterizing effects of rate, wave, pore pressure transfer etc. Most of all, maybe the two time
scales td ¼ r’ggnd*

2

=tn; th ¼ d*
2

rwg=kp
n; representing rate-dependent diffusion tn=r’ggn and pore

pressure diffusion k; are of most importance in the development of shear bands in saturated soils
(rw is the density of water). The dimensionless ratio th=td ¼ rwgt

n=kpnrs ’gg
n defines a number Cr;

which is a key parameter in the following discussion.
If the appropriate time and space scales under discussion are denoted by tk and yk as follows:

the dimensionless governing equations should be [8, 13]
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in which a ¼ r’ggnyn2=tn
2

tn; b ¼ pn=tngntn; d ¼ Erpn=Kyn2tn ’ggn; all variables with bar ‘-’ are
dimensionless.

There are three representative choices of tk and yk to scale the above equations (Table I).
Case 1 represents the early stage ðt ffi tdÞ of localization, which can be described by isobar

(equal super-pore-pressure everywhere) and moment dominated model. Case 2 ðt ffi thÞ
represents that the localization shear may be formulated by quasi-static approximation, which
is dominated by pore pressure production and diffusion. If one intends to investigate the
phenomenon in the range of time th, but pays attention to the gauge length scale l > yk3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pn=r’ggn2
p

; the resulting simplification would be no pore water exchanging at the boundary of
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band, as shown in case 3. Therefore, no pore water exchanging approximation is a look-over
from outside of the band itself. The approximation may be leading, when the evolution of the
shear band is the subject of investigation.

Above all, cases 1 and 2 are the two most important approximations, depicting the early and
late stages of the shear localization. The common point in the two stages is that both are
dissipative, although the physics is different, i.e. rate-dependence and pore pressure diffusion
respectively.

3. INSTABILITY AND LOCALIZATION

The occurrence of instability is presumed to be responsible for the initiation of the shear bands.
In the linear analysis [14–19], the condition for instability and the growth rate of infinitesimal
nonuniformities were obtained. In particular, the analysis shows that a dimensionless parameter
D plays a more significant role than that significant pore pressure transfer takes place at the
moment of instability, where

D ¼
ð@t=@pÞt
kð@t=@gÞ

¼
ð@t=@pÞdptdg
kdpð@t=@gÞdg

¼
plastic work due to dg

pore pressure increase dp
�
pore pressure softening due to dp

stain hardening due to dg

ð3Þ

According to the analysis, the assumption of no pore water exchanging at the boundary of
band is an appropriate approximation for instability study. In this case, D > 1 manifests the
occurrence of instability. Another point worthy mentioning is that inertial is the factor, being
responsible for the non-linearity of the characteristic equation in no pore water exchanging
condition [9].

4. SHEAR BANDS

Although some analyses about the instability and localization provide some operational rules to
signify the occurrence of shear bands, all these approaches do not reveal the evolution process of
shear bands. Indeed, this is the most difficult issue of the problem owing to its non-linearity and
transient performance.

Richar et al. [20] and Khali et al. [21] reported multi-stages of shear localization in
water-saturated soils, localization does not happen simultaneously and homogenously
on the circumference of specimen. All observations imply that shear banding appears to

Table I. Three representative choices of tk and yk to scale a; b; d:

tk y2
k a b d

1 rErpn=Ktn
2

Erpn=Ktn’ggn 1 Cr 1
2 pn=C1Ertn’ggn Erpn=Ktn’ggn 1=Cr 1 1
3 pn=C1Ertn’ggn pn=r’ggn 1 1 1=Cr
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be a series of processes from instability to fully developed shear band, and finally leading
to fracture.

In fact, according to the above-mentioned scaling law, quasi-static pore pressure diffusion
dominated approximation is a suitable model to describe the process. The plastic work rate,
acting as the source of super pore pressure, is the unique non-linear term in the coupling
equations. For simplicity, a linear rate and pore pressure dependent constitutive relation is
assumed as t=tn ¼ 1þ g=’ggn � p=pn: Therefore, the uniform but unsteady stress is tðt; yÞ ¼
tðtÞ ¼ tnð1� ðpdðtÞ=pnÞÞ: Compared to the local shear, the material outside is regarded as rigid.
Then the boundary velocity could be expressed by means of the variables within the localized
zone as [8]
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where d is the half width of shear band, pd is the pore pressure at boundary, * denotes the
characteristic parameter.

By differentiating the equation above, one may obtain the following differential equation of
the band evolution:
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Because of the pore pressure gradient @p=@yjd50; plastic work rate %tt%’gg’gg > 0 drives the deformed
region narrow, while pore pressure diffusion @2p=@y2jd � %@@2 %pp=@y2 > 0 makes the region wide.
Obviously, the band-like shear zone is self-organized by means of the two opposite mechanisms.
Interestingly, in the analysis the non-linearity of the problem has been minimized to only one
term}the plastic work rate [8].

Although the above model sheded light on the mechanism of shear band in saturated soils, it
is extremely oversimplified, so cannot be realistic. In order to investigate the process in detail,
some numerical simulations and experiments have been done [11, 22]. Careful examinations of
the same specimen revealed several fine shear bands distributing over the deformed region
(Figure 1). On contrary, only one fully developed shear band appeared when fracture initiated.

Based on Equation (1), numerical simulation is carried out in order to reveal how
disturbances of finite amplitudes evolve into shear band. Figures 2, 3 show that the
dimensionless stress versus dimensionless time t: The line represents disturbed stress with finite
amplitude of one and three disturbances, which are added in the vicinity of stress climax.
Figures 5, 7 show the variation of disturbed strain rate, from which we can see that drastic
increase of shear strain rate occurring at about t ¼ 0:1 � 0:15 s: It is clear that the stress retains
close to the uniform solution when t is less than 0:1 � 0:15 s and then declines gradually and
shows apparent stress drop (Figures 4, 6). To simulate a number of fine shear bands appearing
near stress peak in experiments, one and three disturbances (distributed along the specimen) are
adopted in the computation. All cases show that similar late-stage behaviour, namely single
shear band appearing in the central region. Here, the three disturbances gradually merge into a
contracting localized area at about t ¼ 0:1 � 0:15 s; where the stress begins to decline.
Afterwards, as the strain rate and pore pressure of the shear band increase rapidly, the band
shrinks. Finally, the shear band is fully formed and shown quite stable bandwidth. All these
figures are qualitatively consistent with observations and are in fairly good agreement with the
analytical prediction [6]. Nevertheless, it is not obvious that the softening branch becomes
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steeper and the shear band becomes thinner. This may be of the absence of a characteristic
length in our model. By introducing a characteristic length e.g. strain gradient, we will see a
obvious evolution of a steeper softening branch and a thinner band [11].

In the numerical simulations, the constitutive relation adopted is as follows:

t ¼ a1gl’ggmpn ð6Þ

in which a1; l;m; n are constant coefficients.
The parameters are adopted as follows:

k ¼ 9� 107 m2; r ¼ 2400 kg=m3; Er ¼ 4� 107 m2

a1 ¼ 5000; l ¼ 1; m ¼ 1; n ¼ �0:25:

Figure 1. X-ray images of shear bands.

Figure 2. The evolution of the stress vs time under three disturbances condition.
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Figure 3. The evolution of the stress rate vs time under three disturbances condition.

Figure 4. The evolution of the strain vs length under one disturbance condition.

Figure 5. The evolution of the strain rate vs length under one disturbance condition.
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The initial and boundary conditions:

pð0; yÞ ¼ 0:39 MPa; gð0; yÞ ¼ 0

’gg ¼ 2:0; except that the values are 1% higher at the points 0:48L; 0:5L; 0:52L; L is the length of
specimen.

5. QUASI-STEADY LATE-STAGE BEHAVIOUR

In accord with the scaling law of the governing equations, if we examine the local area y2
k ¼

Erpn=Ktn’ggn at longer time tk ¼ Npn=C1Ertn’ggn with Nc1; the three dimensionless parameters
would become a � 1=N � Cr; b ¼ 1=N ; d ¼ 1: The concerned problem becomes not only quasi-
static, but also quasi-steady in pore pressure. Since the observed shear bands should be its late

Figure 6. The evolution of the strain vs length under three disturbances condition.

Figure 7. The evolution of the strain rate vs time under three disturbances condition.
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stage appearance, this asymptotic steady state would be very helpful to understand the structure
of the shear band in saturated soils [3]. It has been pointed that this quasi-steady solution can be
found in general rate and pore pressure dependent constitutive relation ’gg ¼ f ðt;pÞ; by
integrating the second equation of (1) we may obtain

y ¼
ffiffiffiffiffiffiffiffiffiffi
2tðtÞ

q Z pmðtÞ

p
1

Z pmðtÞ

x
f ðtðtÞ; ZÞ dZ

�� �0:5
dx ð7Þ

in which pm is the pore pressure at the centre of the shear band. Let p ¼ Pd; the boundary pore
pressure of the shear band, the above expression gives the half width of the band.

The significance of the quasi-steady late stage solution can be verified from another reasoning.
If we skip over the transient process of the pore pressure assisted shear and pay attention to the
late stage state only, the linearized operator of the equations would give enough information
about the bifurcation of steady solutions, i.e. the exchange of stabilities. In the case of rate and
pore pressure dependent constitutive relation, the condition of pore pressure softening
outweighing strain rate hardening signifies the transition from node to saddle, namely loss of
stability of uniform shear deformation. Then the new steady solution would be asymptotically
stable, hence represent the late stage behaviour of the shear deformation.

�
@t
@p

� �
t ¼ l

@t
@’gg

� �
b2 ð8Þ

in which b is the wave number.
The late stage behaviour can be estimated by simply balancing the two terms of pore pressure

source and diffusion in quasi-steady energy equation as [23]

d � ðErpn=Kntn’ggnÞ0:5 ð9Þ

6. CONCLUSIONS

The theoretical and numerical investigations show that the development of the shear band in
saturated soils is a multi-stage process. The process may begin from homogenous shear strain
state. Once the dimensionless number D > 1; inhomogenous shear distribution appears and the
shear band will form gradually. The numerical solutions show that even if there are some
disturbances in the beginning, only one band forms at last.

NOMENCLATURE

* within the band
t shear stress
g shear strain
p pore pressure
rw density of water
r density of grains
L length of the specimen
g the Earth gravity acceleration
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m viscosity of water
k Darcy permeability
C1 material parameter
Er compressible modulus of grains
th; td characteristic times
d half width of shear band
a; b; d dimensionless parameters
Cr dimensionless characteristic time ratio
a1; l;
m; n

constant coefficients

pd pore pressure at boundary
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