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A B S T R A C T :  A reliable validation based on the optical flow visualization for numerical simula- 
tions of complex flowfields is addressed in this paper. Several test cases, including two-dimensional, 
axisymmetric and three-dimensional flowfields, were presented to demonstrate the effectiveness of the 
validation and gain credibility of numerical solutions of complex flowfields. In the validation, images 
of these flowfields were constructed from numerical results based on the principle of the optical flow 
visualization, and compared directly with experimental interferograms. Because both experimental and 
numerical results are of identical physical representation, the agreement between them can be evaluated 
effectively by examining flow structures as well as checking discrepancies in density. The study shows 
that the reliable validation can be achieved by using the direct comparison between numerical and 
experiment results without any loss of accuracy in either of them. 

K E Y  W O R D S :  CFD validation, optical flow visualization, numerical simulation, numerical flow 
visualization 

1 I N T R O D U C T I O N  

The Computat ional  Fluid Dynamics is now a 

promising technology since it is now possible to solve 

full Reynolds averaged Navier-Stokes equations on ge- 

ometrically realistic three-dimensional problems with 

available supercomputers.  This technology enables 

us to highlight physics in complex fluid flows tha t  
are difficult to be clearly visualized experimentally. 

However, it becomes increasingly important  to val- 

idate numerical solutions before relying on them to 

explain any flow physics. The simulation of fluid 

flows involves two essential steps: (1) selecting a suit- 

able mathemat ica l  model that  describes the physical 

flow phenomena of interest and (2) developing numer- 

ical techniques to compute a solution of the mathe-  

matical  model using digital computers.  Both steps 

generally introduce approximations,  therefore, the re- 

sulting numerical solutions may or may not represent 

the real fluid flows being considered. In addition, a 

good agreement between numerical and experimental  

results is necessary to confirm the physical phenom- 
ena observed from experiments, especially from the 

flow visualization of three-dimensional complex fluid 

flows. For example, the widely-used optical flow vi- 
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sualization produces only an integral view of three- 

dimensional flow fields by recording phase shifts or 

direction changes of the light ray passing through test 
sections due to density variations [1~5]. Hence the phe- 

nomena observed from such images are not their di- 

rect images, therefore, not easily interpreted. 

The s tudy on verification and validation of nu- 
merical solutions has been carried out for decades, 

usually by comparing numerical results with exact so- 

lutions or experimental  da ta  at some measurement  

points in flowfields. However, most of the flowfields 

of interest nowadays are highly transient since many  

unsteady phenomena may be included, such as shock 

wave reflection, diffraction and interaction. The ex- 

act solutions for such fluid fields are not available, and 
usually, it is also not sufficient to compare numerical 

solutions with a limited set of point measurements 

from experiments. Only through a comparison with 

the data  from the whole flowfield measured by non- 
intrusive techniques can the confidence in numerical 

solutions be established. From this point of view, a 

reliable validation has two aspects: one is a check on 

numerical values and the other is a check on char- 

acteristic flow structures. Such a validation is still a 
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challenging problem for simulating complex fluid flows 
in the Computational  Fluid Dynamics. 

The optical flow visualization has been applied 
to the validation of numerical solutions of CFD for 
many years. The most widely used method for two- 
dimensional fows is to display numerical results in 
the form of isopycnics, which can be compared with 
experimental infinite fringe interferograms (for exam- 
ple, Inoue et al.[6]; Sasoh et al.[7]; Sun et al. Is] and 
Takayama and Jiang[ 9]). The comparison in this way 
is quite informative since the interferometric fringe 

in two-dimensional flows gives an indication of den- 
sity contours. However, the evaluation on the accu- 
racy of numerical solutions is not easy because the 
corresponding position of numerical isopycnics within 
experimental fringes is difficult to locate accurately. 
Furthermore, in the case of axisymmetric or three- 
dimensional fluid flows, the evaluation becomes even 
more difficult because the fringes no longer correspond 
to the density contours, but  represent averaged den- 
sity variations along the light path. Using numer- 
ical results as initial values on boundaries to count 
fringes, Sun and Takayama Is] reported a quantitative 
image analysis of infinite fringe interferograms to vali- 
date their numerical solutions. Useful comparison can 
be made with this technique but  the accuracy varies 
with the method used in locating isopycnics within 
fringes. Finite-fringe interferograms can also be an- 
alyzed with image processing techniques as reported 
by Havener et al. [3], Jiang et al. [1~ and Sharma et 

al.[ 11]. More data  is readily available by using those 

methods but a loss of accuracy in experimental data  
cannot be avoided. This is because each fringe is 
broadened to a certain width and the data  is avail- 
able only at the fringes. So, these methods require 

a linear interpolation between fringes to obtain the 
required data, which results in errors in highly non- 
linear flowfields. Fourier transform fringe analysis 
supplies more information with high accuracy but  its 
application is limited when the hetrodyning frequency 
of the finite fringe interferograms is low as discussed 
by Babinsky et al. [2I and Bone [12]. However, all of the 

above-mentioned methods are of limited use for three- 
dimensional unsteady flows. Tomographic reconstruc- 
tion method can be used to obtain density informa- 
tion but  it is experimentally intensive because one 
projection is insufficient to determine the density dis- 
tr ibution and tens of density projections from differ- 
ent viewing directions have to be provided simultane- 
ously (Parker[131; Morton et al.[14l; Taketa et al.[15l). 

With the above considerations, the strategy of croat- 

ing numerical interferograms for a direct comparison 

with experiments was discussed for CFD validation 

by many authors (Babinsky et al.[l]; Havener et al.[3]; 
Jiang et ai.[16'171; Tam et al.[IS]; Tamura and Fujii[19]; 

Yates [4]). From the number of fringes and their distri- 

butions, the accuracy of numerical solutions and the 

agreement on characteristic flow structures appear- 

ing in the results can be estimated. The algorithm 

for integrating density in axisymmetric flowfields was 

described by Havener et al. [3] and three-dimensional 

density integration was performed by Yates [41. Re- 

cently, an efficient algorithm for the integration was 

developed by Jiang and Takayama [5] , which is much 

faster and can make the post-processing method more 

widely applicable. 

In the paper, a reliable validation based on the 

optical flow visualization for numerical simulations 

of complex flowfields is addressed and several test 

cases of two-dimensional, axisymmetric and three- 

dimensional flowfields were presented to demonstrate 

the reliable validation through the direct comparison 

between numerical and experimental results. Various 

aspects of this validation are discussed in detail, espe- 

cially for three dimensional cases, where a clear flow 

visualization is very difficult. 

2 P R I N C I P L E  O F  O P T I C A L  F L O W  V I S U -  
A L I Z A T I O N  

Interferometry, schlieren and shadowgraph are 
three techniques widely used in the optical flow visu- 

alization. These optical techniques are based on the 
fact that  as light passes through a flowfield its phase 
and direction are changed due to variations of the re- 
fractive index induced by non-uniform density in the 
flowfield. This makes it possible to analyze physical 
phenomena that  are featured by density changes in 
the flowfields. Discussions on the above techniques 

appear in numerous text books and in the literature. 

A brief summary is given here for completeness. 

In the case of ideal and non-reacting gases, the 

refractive index n is related to the density p by the 

Gladstone-Dale equation 

n(x,  y, z) = 1 + Kgp(x,  y, z) (1) 

where Kg is the Gladstone-Dale constant that  changes 
depending upon gas species and varies slightly with 
the light wavelength. In holographic interferome- 
try, double exposure interferograms are generated by 
exposing the film to the object and the reference 
beam, respectively. For infinite fringe interferome- 
try, the object beam passes through the flowfleld, its 
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phase changes due to variations of the refractive in- 

dex caused by density changes between exposures but 

the phase of the reference beam does not change. The 

phase shift of the object beam relative to the reference 

beam between exposures is calculated by integrating 

2rr L L~ Ar Yim) ~- T / ( g  (p(X, y, Z) -- PO) dl (2) 

where A is the wavelength of the light, no the refrac- 
tive index of the undisturbed flow and Lo the length 
of light path through the test section. The image in- 
tensity of the infinite-fringe interferograms I can be 
calculated by 

I = 1 + cos (Ar Yim) + 40) (3) 

where (xim, Yim) denotes the image plane, and r is an 
initial phase shift to compensate for any phase shift 
between two exposures and is taken as zero in most 
cases. The fringe shift N is given by 

---- ~ i r  Yim). (4) N 

This corresponds to the fringe number in infinite- 

fringe interferograms. One should integrate the den- 
sity along the actual light path by using Eq.(2) as 
the light deflects through the flowfield in the test sec- 
tion, but  the procedure is computationally expensive. 
The straight line approximation [4] is accepted in the 
present work, which was shown to be a good approx- 
imation when the test section is not too big and the 
density change is not too large. In the case of finite- 
fringe interferograms achieved by tilting the reference 

beam between exposures, the image intensity is given 
by 

I -~- 1 q- COS (A~(Xim; Yim) q- 27CVx Xim q- 2?rVy Yim) (5) 

where vx and vy are the special frequency components 
of the unperturbed fringes. 

Schlieren method is also a very popular flow vi- 
sualization technique. The intensity of each point in 

schlieren photographs is proportional to the density 
gradient perpendicular to the knife edge because the 
ray deflection is proportional to the density gradient. 
When the knife is set to be perpendicular to the x-axis 
in the physical space the intensity I is proportional to 
the integration of the density gradient along the light 
ray 

L Lo Op(x, y, z) dl 
I o~ Ox (6) 

Shadowgrams are widely used in aerodynamic 
experiments, in which the image intensity is pro- 
portional to the gradient of the integration of 

grad p(x ,y ,  z) in the direction perpendicular to the 
light ray, which can be calculated by 

L 
Lo 

I oc grad grad p(x, y, z) dl (r) 

Since both the schlieren and shadowgraph methods 
can provide only qualitative information, these meth- 

ods are not used as frequently as interferometry in 

applications to the CFD validation. 

3 T W O - D I M E N S I O N A L  C A S E S :  S H O C K  

W A V E  R E F L E C T I O N  A N D  D I F F R A C -  

T I O N  

We now consider the visualization of two- 
dimensional fluid flows. The optical setup of experi- 
ments is schematically shown in Fig.1. In this setup, 
the light beam is split into two and collimated with 

two collimating mirrors: one of these beams is cho- 

sen as the reference beam and the other as the object 

beam. The reference beam and the object beam are 

then superimposed on a holo-film by means of two re- 

flecting mirrors. In a two-dimensional case, density 

distributions on planes perpendicular to the light ray 

within a test section are identical so that Eq.(2) is 

simply reduced to 

27r 
A r  Yim) = "-ffKgLo(p(Xim, Yim) -- P0) (8) 

where the image plane is parallel to the computational 
plane and Lo is the width of the test section. 

The first test case of two-dimensional flow flows 
is for a shock wave diffracting over a 90 ~ corner at 

/ collimating mirrors 

ob ooUo m 

i 

fihn holder 

Fig.1 Schematic for constructing two-dimensionM 
interferograms 
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Mi = 1(3, which is numerically simulated by solv- 

ing the Euler equations with a dispersion-controlled 

scheme[ 2~ implemented with non-reflecting boundary 

conditions described by Jiang et al. [m] . The efficiency 

of the scheme has been reconfirmed by Zhuang [22]. 

The numerically-determined density is processed to 

produce a synthetic interferogram by using Eq.(8) 

and the resulting image is shown in Fig.2, where the 

transmitting shock diffracts over the corner, expan- 

sion waves propagate upstream and the primary vor- 

tex develops from the corner. The experimental inter- 

ferogram obtained by using holographic interferome- 

try is shown in Fig.3. The isopycnics and a schlieren 

photograph computed with the same density data by 

using Eq.(6) are shown in Figs.4 and 5, respectively. 

By comparing Fig.2 with Fig.3, it can. be ob- 

served that  in these two photographs the number of 

fringes is the same, t ransmi t t ing  shocks are identi- 

cal and fringe distributions coincide with each other. 

Therefore, a good agreement between them can be 

concluded. Minor discrepancy exists near the corner 

and at the rigid wall. The discrepancy can be at- 

tributed to the effect of viscosity, that  is, the Euler 

equations are solved for numerical simulations, which 

require a slip boundary condition, instead of no-slip 

boundary in experiments. From this comparison, the 

Fig.2 Numerical interferogram of a shock wave 
diffracting over a 90 ~ corner at Mi = 1.3 

Fig.4 Isopycnics of a shock wave diffracting over a 
90 ~ corner at Mi = 1.3 

Fig.3 Experimental interferogram of a shock wave 
diffracting over a 90 ~ coner at Mi = 1.3 

Fig.5 Numerical schlieren of a shock wave diffracting 
over a 90 ~ corner at M~ = 1.3 
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agreement or the disagreement on wave structures can 

be decided readily and the factors contributing to the 

disagreement can be easily deduced. Such a compar- 

ison is very important for the shock wave research 

since wave structures are specially emphasized in this 

way. 

Quantitative validation is also possible in this 

case by quantifying the experimental interferogram as 

shown in Fig.3. Since the actual level of the density 

shift between fringes is known, counting the number 

of fringes between the locations of known density and 

the points of interest provides some quantitative den- 

sity information [s] for validation. However, the posi- 

tions of specific isopycnics, as shown in Fig.4, cannot 

be accurately determined from the experimental inter- 

ferogram. It is usually assumed that the middle line of 

each fringe is the position of the corresponding isopyc- 

nics. Unfortunately, this will introduce errors because 

of high non-linearity of the flowfields in many cases of 

interest. Actually, most validations widely accepted 

are carried out by comparing Fig.4 with Fig.3, but it is 

obvious that  the comparison between Fig.2 and Fig.3 

could gain more credibility of numerical simulations. 

Another advanced technique is Fourier trans- 

form fringe analysis, which is applied to finite-fringe 

interferograms to obtain actual density of flowfields 

with error levels among fractions of the density differ- 
ence between two neighboring fringes [15]. However, if 

the density jump across a shock wave is larger than  

the density difference between the two fringes, the rel- 

evant area of the flowfields is very difficult to be quan- 

tified. In the case, a phase-unwrapping algorithm is 

required to determine the correct fringe shift. How- 

ever, such an algorithm will not work if the shock 

waves are everywhere strong [12], since it requires a 

start ing point where the magni tude of the fringe shift 

is less than one. In conclusion, these quantifying 

methods are very useful in practice but  will result in 

the loss of accuracy to a certain extent or be limited 

to some special cases when trying to extract numer- 

ical information out of experimental  interferograms. 

I t  seems tha t  the present validation mentioned above 
makes the best use of the experimental  data. 

Figure 5 shows a schlieren photograph of the 

shock wave diffraction. Features related to sharp 

discontinuities in density, such as the shock waves 

and the slip line, are easily visualized against the 

background but  continuous density distributions are 

poorly visualized. Shadowgrams also show the similar 
characters in the flowfield. Therefore, for a quantita- 

tive validation of numerical solutions, the interfero- 

gram is preferable. 

Figure 6 presents a special interferogram of 
a shock wave focusing after its reflection from a 

parabolic reflector, tha t  is, a planar shock wave at 

~li = 1.6 propagates  toward the reflector, and reflects 

back, and then the reflected shock wave focuses at the 

focal point of the reflector. A quanti tat ive validation 

can be explained with this figure tha t  consists of two 

parts: the experimental  image in the left and the nu- 

merical one in the right. If  the relevant fringes in both  

results match with each other exactly, the agreement 

can indicate that the numerical result is the same as 

the experimental data. If there are some discrepan- 

cies in the position of each pair of the relevant fringes, 

the accuracy of the numerical result can be evaluated 

from the discrepancies. For instance, the maximum 

shift in positions of the relevant fringe in Fig.6 is less 

than 30~0 of the interval between neighboring fringes. 

Considering that one fringe shift represents a density 

change of 10% of the initial density in front of the 

planar shock wave, one can conclude that this max- 

imum discrepancy indicates that the maximum error 

in density is less than 3.0% of the initial density ac- 

cording to fringe pattern analysis. This implies that 

the accuracy level reached could be as high as one ob- 

tained by quantifying the experimental interferogram 

with Fourier transform fringe analysis. Moreover, the 

accuracy level discussed is at the extreme position, 

the actual level is much higher in the most area of the 

flowfield. However, there may be something uncertain 

in the experiment when one evaluates the accuracy 

level of numerical results according to experimental 

data, but its discussion is out of the scope of this pa- 

per. 

Fig.6 Interferogram of a shock wave focusing af- 
ter its reflection from a parabolic reflector to 
demonstrate quantitative validation: experi- 
mental result (the left) and numerical one (the 
right) 



198 ACTA MECHANICA SINICA 2003 

4 A X I S Y M M E T R I C A L  C A S E S :  S H O C K  
W A V E  P R O P A G A T I O N S  

In the case of axisymmetric fluid flows, the prin- 

ciple for constructing interferograms is schematically 

shown in Fig.7. Here the reference beam and the ob- 

ject beam are still superimposed on the holo-film but 

the density distribution on the planes perpendicular 

to the light ray within the test section varies along the 

light path.  Considering this difference and the sym- 

met ry  of the physical domain, when the light pa th  is 

perpendicular to the axis of symmetry,  the phase shift 
expressed by Eq.(2) can be calculated by the following 

equation 

47~ f R 
Aq~(xim, ~Jim) ~- "~--Kg/yi= ( p ( x ,  I") - p0)dr (9) 

where R is the diameter  of the physical domain and 

the integration is carried out from r = Yim to R along 

the light path.  This integration is not as straightfor- 

ward as in two-dimensional cases but  still quite simple 

to calculate. More detailed description of the density 
integration was given by Havener et al. [3]. 

the t ransparent  wall of the test  section paralMly, and 
to emerge parallelly. The detailed description of the 
experiment was given by Takayama et a1.[231 and Jiang 

et al. [161. An experimental  interferogram of the flow- 

field is shown in Fig.8, the corresponding numerical 

one is presented in Fig.9 and the isopycnics of the nu- 

merical solutions in the symmetric  plane are plotted 

in Fig.10. 

Fig.8 Experimental interferogram of a shock wave 
propagating in an expansion tube at Mi = 1.3 

Fig.9 Numerical interferogram of a shock wave prop- 
agating in an expansion tube at Mi = 1.3 

Fig.7 Schematic for constructing axisymmetrical 
interferograms 

As the first axisymmetric case, a shock wave 
propagat ing in a tube  with a sudden area change in 

its cross section, referred to as an expansion tube  (a 

large diameter  chamber is connected to a small di- 

ameter  shock tube),  is simulated by using the same 

numerical code as used in two-dimer/sional cases. The 

Mach number is taken to be Mi = 1.3 and the diam- 

eter ratio, the large chamber to the shock tube, is 

taken as 2 : 1. In the experiment, this large chamber 

is specially designed to have an aspheric cross section 
which allows the collimated incident ray to traverse 

Fig.10 Numerical isopycnics of a shock wave propa- 
gating in an expansion tube at Mi = 1.3 

As is expected, the difference between the inter- 
ferogram shown in Fig.8 and the numerical isopycnics 

in Fig.10 is obvious because of the axisymmetric den- 

sity distribution. The t ransmit t ing shock wave, the 



Vo1.19, No.3 Jiang Zonglin: Reliable Validation Based on Optical Flow Visualization for CFD Simulations 199 

pr imary  vortex ring and the shear layer appear  in dif- 

ferent ways in these two kinds of the displays. Fur- 

thermore,  the shock wave reflection from the tube  wall 

is clearly visible in the isopycnics, but  smeared in the 

interferogram due to effects of the integral view of the 

whole density field. Hence the physical understand- 

ing of the wave phenomena is not so easy to reach and 

conclusions about  the CFD validation are difficult to 

draw. However, if the validation s t rategy is changed 

by constructing a numerical interferogram as shown 

in Fig.9 and comparing it with the corresponding ex- 

perimental  one in Fig.8, it is readily observed tha t  the 
agreement between the numericM and the experimen- 

tal interferograms is excellent. This indicates that  an 

acceptable comparison between numericM and exper- 

imental results can be achieved only when two results 
are presented based on the same principle. Under 

such circumstances, we can reach a conclusion much 

easier and avoid any mis-interpretation. 

The second axisymmetric  case presented is for 
the diffraction of a shock wave discharging from a 

shock tube into air at a shock Math  number  of M i  = 

1.6. I ts  computat ional  domain is similar to the first 

case but  without tha t  big diameter  tube. The nu- 
merical result is given in Fig.11 and the experimentM 

interferogram is shown in Fig.12. It  can be seen from 

the comparison that  the agreement between the com- 
putat ional  result and the experimental  da ta  is excel- 

lent. This is not only because the number  of fringes is 

identical but the distribution of the individual fringes 

matches well with each other with only minor excep- 

tions. In fact, the largest deviation in fringe positions 
is less than  half of the fringe distance. This case is 

more useful since there are many fringes that  can be 

utilized in validation. 

Fig.12 Experimental interferogram of a shock wave 
discharging from a shock tube at Mi = 1.6 

It  is also necessary to point out that  pertur-  

bations in the test section may make experimental  

fringes move slightly forwards or backwards so tha t  

the experimental  uncertainty could impose some dif- 
ficulties on est imating the accuracy of numerical so- 

lutions. Moreover, the difficulty in t iming numerical 

results to match  exactly with experiments also results 
in fringe shift in the numerical image. These facts 

have to be considered to achieve a reliable validation. 

Figure 13 shows a special interferogram of a 

shock wave propagat ing from a shock tube into an 

expansion tube at M i  = 2.0, where the experiment 
photo (upper half) and the numerical result (lower 

half) are combined together. Further validation can 

be explained by this figure, as discussed about  Fig.6 

in the last section. The max imum shift in fringe po- 

sitions observed from Fig.13 is less than 20% of the 

interval between two neighboring fringes. Because one 

fringe shift represents a density change of 13.68% of 

the initial density in front of the shock wave, this max- 

imum discrepancy means tha t  the maximum error in 

density is less than 2.8% of the initial density accord- 

ing to fringe pa t te rn  analysis. However, it must  be 

Fig.l l  Numerical interferogram of a shock wave dis- 
charging from a shock tube at Mi = 1.6 

Fig.13 A special interferogram of a shock wave prop- 
agating from a shock tube into an expansion 
tube at Mi = 2.0: the experiment photo (up- 
per half) and the numerical result (lower half) 
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pointed out tha t  the max imum discrepancy is not in 

the density distribution in the axisymmetric  plane, 

but  in the integrated density along the light pa th  

within the test  section. 

In addition, the reliability of the validation also 

depends on the purpose of study. For example, if 

the shock wave motion and shock wave interaction 
are emphasized in this case, the agreement concluded 

from the comparison is excellent. However, if shock- 

wave/boundary-layer  interaction is to be investigated, 

it is obvious tha t  the validation is not acceptable be- 

cause the boundary  layer is not visible in the exper- 
imental results due to experimental  limitations a n d  

the numerical solutions are only based on the Euler 

equations. 

Quantification of the axisymmetric interfero- 

gram shown in Fig.12 is also possible by perform- 

ing an inverse t ransformation of the integrated image 

data  to obtain the density information on the sym- 

metric plane. However, the computat ional  process 

may break down and the accuracy of the numerical 

value may be compromised in the case of flowfields 

with many  strong shock waves. We, therefore, con- 

clude that  the present validation for the axisymmetric 
case is more efficient and easier to carry out. 

5 T H R E E - D I M E N S I O N A L  C A S E :  S H O C K  

W A V E  D I F F R A C T I O N  

For three-dimensional flowfields, the reconstruc- 

tion of density from interferograms is, at least, theo- 

retically possible with the use of tomographic tech- 

niques which allows an unknown density distribu- 
tion to be determined from line integrals of density 

through the whole distribution. However, in order 

to perform the inversion successfully, tens of inter- 

ferograms in different viewing directions at the same 

t ime must  be provided for the reconstruction of com- 
plex flowfields [t3'zd]. As can be imagined, the tomo- 

graphic inversion is immensely difficult in highly un- 

steady flows because it is almost impossible to record 

many flow images simultaneously. In comparison, cre- 
ating computat ional  interferograms from the three- 

dimensional density distribution is more feasible for 

CFD validation. 

A schematic for integrating the three- 
dimensional density with the previously-used 

method [4] is shown in Fig.14, where the interval 

xj < xj+t defines the intersection of the light pa th  
with a computat ional  cell. Tracing the light pa th  as 

it passes through the flowfield and integrating the 

appropriate  function of the refractive index along 

this pa th  are computat ional ly  expensive even if the 

straight line approximat ion is adopted. In this pro- 

cess, it is necessary to determine the computat ional  

cell that  the light intersects with, find the intersected 
points on the computat ional  cell, interpolate the den- 

sity at these two points, calculate the integral for this 
segment and add it to the appropriate  sum. The first 

three operations are the most t ime-consuming for the 

density integration. To overcome this difficulty and 

make the three-dimensional post-processing more ef- 

ficient, a fast algorithm is proposed by Jiang et al.[5]. 

As a result of the improvement,  the newly developed 

code is about  20 times faster than  the one based on 

the conventional integrating algorithm. 

viewing window 

~ ~ ' / ; d d d d d d d d ~ t  inte~radn~ cell 

N 
' ' -  I II I I I I I l Y l f  

I I ] I I ~ physical domain with grids 

Fig.14 Schematic of three-dimensional density integration 

The three-dimensional test  case is a shock wave 

diffraction, created by discharging a t ransmit t ing 

shock wave from the open-end of a square shock tube 

into ambient air at a Mach number  of 1.5. The 

shock wave at the open-end is initially planar, but  

quickly develops into a spherical shape via a three- 

dimensional transit ion with time. 

The three-dimensional hyperbolic system of the 

conservation laws for a perfect gas was solved us- 
ing a dispersion-controlled scheme [2~ on an equally- 

spaced grid with 200 x 150 x 150 mesh points. Ex- 
periments were conducted in a 40 m m x d 0  m m  square 

cross-sectional tube  connected to a 6 0 m m x l 5 0 m m  

diaphragmless shock tube in the Shock Wave Research 
Center, Tohoku University, J apan  [24]. The diffrac- 

tion of the shock wave was visualized with the double 

exposure holographic interferometry. Both numeri- 

cal and experimental  results viewed in three viewing 

directions were given in Figs.15 through 17, respec- 

tively. Figure 15 shows the side view of the shock 
wave diffraction, which is in a view direction normal 

to the side-wall of the shock tube. Figure 16 shows 

the corner view tha t  is observed along the diagonal 

line of the square cross section. Figure 17 shows the 

axial view from the direction of 15 ~ degree off the axis 

of symmetry.  
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(a) Numerical interferogram 

(a) Numerical interferogram 

(b) Experimental interferogram 

Fig.15 Side views of a three-dimensional shock wave 
diffracting from a square shock tube at Mi = 
1.5 

(a) Numerical interferogram 

(b) Experimental interferogram 

Fig.16 Corner views of a three-dimensional shock 
wave diffracting from a square shock tube at 
Mi = 1.5 

(b) Experimental interferogram 

Fig.17 Axial views of a three-dimensional shock wave 
diffracting from a square shock tube at Mi = 
1.5 

Carefully examining each pairs of interferograms 

shown in Fig.15 through Fig.17, it is seen that  the 

agreement between the numerical and experimental 

results is good: the number of fringes and their dis- 

tributions coincide very well with each other. The 

only discrepancy observable between the numerical 

and experimental interferograms is near the exit in 

Figs.15(a) and 16(a) due to the fact that the resolu- 

tion for displaying these numerical images is not fine 

enough to distinguish as many fringes as shown in the 

experimental interferograms in Figs.15(b) and 16(b), 

where density gradients are very high. Three pixels, 

at least, are necessary to visualize one fringe: a dark 

pixel between two white pixels. If the space between 

two fringes is smaller than one pixel, computed fringes 

will be displayed incorrectly. This problem can be 

avoided when a numerical image is created with fewer 

fringes, for example, see the images shown in Fig.17. 

Apart from this minor discrepancy, all the wave phe- 

nomena, such as the non-uniform flow expansion 
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created at corners and a secondary shock wave devel- 

oped near the primary vortex loop, appear to be iden- 

tical in numerical and experimental results. From the 

comparison of these results obtained by viewing from 

three viewing directions, it can be concluded that the 

numerical solutions are well validated. 

It is obvious that for the validation of numerical 

simulations of such a complex flowfield, a check on nu- 

merical solutions with only a limited set of point mea- 

surements in the flowfield is not sufficient and a com- 

parison between topological flow structures from both 

numerical and experimental results must be made. 

Comparing Figs.15 and 16 with Fig.18 reveals 

some differences between interferometric fringes and 

numerical isopycnics in both the mid-wall symmetri- 

cal plane and the diagonal plane. Because the fringes 

in Figs.15 and 16 represent the integrated density seen 

by the individual light ray passing through a test sec- 

tion, many planes having different density distribu- 

tions overlap. This results in many fringes in the cen- 

tral area in the interferograms as shown in Figs.15 

and 16 but there are no density changes there, as 

shown in Fig.18. Moreover, from numerical isopyc- 

nics shown in Fig.18(b), the secondary shock wave is 

clearly observable but it is not easily identified from 

the interferograms shown in Fig.16. According to the 

above discussion, it is understood that, for a three- 

(a) The mid-wall symmetric plane 

(b) The diagonal plane 

Fig.18 Isopycnics in two symmetric planes of a three- 
dimensional shock wave diffracting from a 
square shock tube at Mi = 1.5 

dimensional flow visualization, some physical features 
may appear to be smeared and some non-physical fea- 
tures may be created. Therefore, the experimental 
data  needs to be carefully interpreted with reliable 
numerical results that  are capable of showing three- 
dimensional transient phenomena in detail. 

As is well known, both the Computational Fluid 
Dynamics and the experimental flow visualization 
are important  tools in the research of fluid science. 
Because the most interesting problems in engineer- 
ing are three-dimensional and transient, and contain 
many complex flow phenomena, investigations into 
such flowfields are very useful and important.  How- 
ever, it can be very difficult. It may be too hard 
to expect the experimental flow visualization to pro- 
vide all the necessary information for understanding 
these complex flowfields. However, the present study 

shows that  it may be possible to circumvent this dif- 
ficulty through the interferometry that  can provide 
interferograms clear enough to validate numerical so- 
lutions. In other words, experimental images of a 
three-dimensional flowfield only need to provide in- 
formation for validation of numerical solutions. The 
numerical results thus validated, in return, provide 
some useful information for interpreting the complex 
interferometric patterns.  As a result, such a CFD val- 
idation works as a tool that combines the CFD and 
the experiment together for exploration of the flow 

physics that  can never be done with the CFD or the 
experiment alone. 

6 CONCLUSIONS 

Computational  simulation of the optical flow vi- 
sualization can create a direct comparison between 
numerical and experimental results, which is demon- 
strated to be a promising way to approach the reli- 
able validation of numerical solutions, especially for 
three-dimensional complex flowfields where quantifi- 
cation of experimental interferograms is almost im- 
possible. This comparison with quantitative charac- 
ters is an effective approach to the whole flowfield 
validation without any loss of accuracy on both ex- 
perimental data  and numerical results. However, in 
order to achieve reliable validation, the fiowfield of 
interest must be represented correctly by the selected 
physical models, visualized clearly by interferometry 
and displayed properly by computer  facilities. In 
addition, fringe pat terns of experimental results in 
axisymmetric and three-dimensional flowfields need 
to be carefully interpreted by taking into account 
density-integrated effects. 
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