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CRACK PROBLEMS OF PIEZOELECTRIC
MATERIALS

Wang Tzuchiang Han Xueli
(LNM, Institwte of Mechanics, Chinese Academy of Science. Beijing 100080, China)

ABSTRACT This paper presents an analysis of crack problems in homogeneous piezoelectrics or on
the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric
displacement and electric potential across the crack faces. The explicit analytic solutions are obtained
for a single crack in piezoelectrics or on the interfaces of piezoelectric himaterials. A class of boundary
problems involving many cracks is also solved. For homogeneous materials it is found that the normal
electric displacerent I} induced by the crack is constant along the crack faces which depends only on
the applied remote stress field. Within the crack slit, the electric fields induced by the crack are also

constant and not affected by the applied electric field. For the bimaterials with real H, the normal
electric displacement I} is constant along the crack faces and electric field E, has the

singularity ahead of the crack tip and a jump across the interface.

KEY WORDS piezoelectric materials, crack, interface

I . INTRODUCTION
Piezoelectric materials have been extensively used in smart devices as sensors and actuators.
The combined mechanical and electrical loads give rise to sufficiently high stresses in these devices
which reuslt in catastrophic failure. The fracture mechanics of piezoelectric materials have attracted
many theoretical workers (Parton!'!, Pohanka and Smith'?!, Deeg®, Pak and Herrmann®l,
McMeeking!®!, Pak®!, Sosal’l, Suo et al.®), Suol®’, Zhang and Hack**), Yang and Suot'?,
Dunn'?, Wang!'*, Wang and Huang!'*!, Zhang and Tong!'*?, Yu and Qin"*1, Gao, Zhang and
Tong!'”l among others). There are two different aspects for the electric boundary condition along
the crack faces. Parton[!! pointed out that the medium within the crack slit is electrically permeable,
hence the electric potential and the normal electric displacement should be continuous across the
crack slit;
D=0, pt= ¢~ ¢D)
This aspect has been supported by Zhang and Hack('!, Dunn['?} and Hao and Shen!!®!, Paklel,

Sosal™, Suo et al. [*? proposed another set of electric boundary condition on the crack faces.

* The project is supported by the National Natural Science Foundation of China(No. 19704100) and the Natural
Science Foundation of Chinese Academy of Sciences(No. KJ951-1-201).
Received 20 November 1998.
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Dh=D =0 (2)
This aspect ignores the electric field within the crack slit. The boundary condition (2) has been ex-
tensively used in literature, McMeeking!®’ pointed out that the condition (2) may not be appropriate
for a crack slit. The crack can be considered as an elliptic flaw with low permittivity. The parame-
ter €a/&.b proposed by McMeeking!® is an important quantity , which controls the electric boundary
condition on the flaw surface, The boundary condition (2) is suitable for the case in which this pa-
rameter is small, otherwise one should use the boundary condition (1).

This paper presents an analysis for the crack problems in piezoelectric materials, or on inter-
faces between two dissimilar piezoelectric materials based on the boundary condition (1). The paper
is organized as follows: Section 2 introduces the basic formulae of elastic piezoelectric materials,
Key results for single crack in homogeneous piezoelectrics or on the interfaces of piezoelectric bima-

terials are presented in section 3. A class of boundary problems including a set of cracks on the in-

terface is also solved.

I . BASIC FORMULAE
The constitutive equations for piezoelectric materials are
oy = Cijklyb] - equk
{D = ewlu + &l

where 0,,,7,; are the stress tensor and strain tensor respectively. I3, E, are the electric displacement

(3

and electric field. c,u,ew,€; are the elastic, piezoelectric and dielectric constants. The mechanical
and electrical equilibrium equations take the form

G, = 0

n.,=0

Strain 7;; and electric field E; can be expressed as

(4>

_ 1. N
{x, = G + 1. .

E = 90.1'
where w is displacement, ¢ is the electric potential.
Substituting Eqgs. (3),(5) into Eq. (4), one obtains
{ (i + €6,9) . = 0O %)
(et — €P)i = 0

Consider a two-dimensional problem, the general solution to which can be expressed by com-
plex potentia]t8’

{wsp} = af(Gix+ Eo) ("
where a is a four-component column. §, =1, {,=p Substituting Eq. (5) into Eq. (), it follows
that

(Cappar + eugyai)§als = 0

(eappte — €apa )8l =0
where «, 3 take on the values 1 and 2. j,k have the values 1,2 and 3. This is an eigen-problem for

(8)
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column a. Suo et al. '] have shown that the eigenequation of this problem has eight complex roots in

forming four conjugate pairs, Let 5,2,/ 4 be the four roots each with a positive imaginary part.
We have

4
{tr@} = 2Re X asfi(z) €D
k=1
where zi=x+py.

For the stress and electric displacement components, one obtains

4
{00, Db} = 2Re >\ bifi(z)

) (10)
{qua} =— ZRezblz,ﬂﬂ(Zfz)
Column b has the components o
b = (cyma + eza) + (Copar + exad p A1)
by = (ot — €nay) + (eszutte — €na) p
Introduce 4 X 4 matrices A and B
A = [a;,a;,a;,a,], B = (b,,b,,bs,b,] (12)
Define a function vector f(2) of a single variable
f(» = {0, L@, (2, fi()} (1)
Then the generalized displacement and the traction on the real axis can be expressed as
U@ = {u,0) = Af(® + A f(D (14)
t(x) = {6,,,D}) = Bf (©) + B f (2 (15)
I, CRACK PROBLEMS
3.1 Mechanics Analysis
A finite crack of length 2a lies on the interface be- X
tween two half spaces, the material of the upper half
space is denoted by 1 and that of the lower by 2 as shown Material 1
in Fig. 1. Both the materials 1 and 2 are piezoelectric ma- X,
terials. The crack segment is denoted by L. The continu- = - =
ity of generalized traction ¢ (x) across the zaxis requires Material 2
that
tt(D =t (), —oo<<zx<l+ oo (16) Fig. 1 A finite crack of length 2a on in-
The above equation can be rewritten as terface of piezoelectric bimateri-
Bf* @ +B. fim (2 =B.fi* @D + B, [i* (@, Al

— oo < g+ oo an
Hereafter the subscripts 1 and 2 attached to matrices and vectors indicate these quantities belong to

material 1 and material 2, respectively.
The infinite plate is subjected to remote stresses 57,03 ,0% ,05 and electric displacements I}”,

D¥ loadings. The solution is composed of two solutions; one is the homogeneous solution produced
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by the applied remote loading and the other is the inhomogeneous solution induced by the cracks.
Our attentions will be focused on the inhomogeneous solution,

According to the work by Suo et al. 89, from Eq. (17) one obtains
{ B.fi* () =B, fi (2, y>0

, - (18)
B.f:* () = B, fi” (2, ¥y<O0
Furthermore one can obtain
i8' (2) = HB\fi" () — HB.f;" (D (19)
where &(x) is the generalized displacement,§(x) = {u" —u ™ —¢p~ }.
A bimaterial matrix is defined as
H=Y,+7Y, (20)
where '
Y, =iAB7}, Y, =iA;B;! AP
When the crack is in a homogeneous material, H is a real matrix,
H = 2ReY (22

When the crack lies on the interface of bimaterials, H is generally spoken of as a complex ma-
trix. If the material pair has certain symmetry, H can be real. This paper discusses only the case of
real H,

From the continuity of the generalized displacement across the bonded interface, one can con-
clude that the following function k(z) is analytic in the entire plane beside the cut L.

heo = (B0 =0 (23)
B.f. (=), y<0
On the crack faces, the generalized tractions ¢, (2), £, () satisfy the following boundary con-

dition
L) =6()=—T, xe€ L (24
where
T = {051,0%,0%,d} (25)
where d is an unknown parameter. Substituting (17),(23) into (24), one obtains
(D +h (D=—-T, z€ L (26)

This is a typical Hilbert problem, the solution of which is not unique. The auxiliary conditions are
needed in order to obtain a unique solution, They are :h* (2)—0 as z—>oo; h(z) has square root
singularity at the crack tip and the net Burgers vector for the finite crack vanishes, The last auxil-

iary condition can be represented as

| o @ — b @Jaz=o @D
The solution, which satisfies the auxiliary conditions, is
1 z
_ = = ——— — 1
h(z) =T f,(2), £,(2) 3 [: T2 :} 28

From Eq. (28) it follows that
t(x) = 2T foi(D, x| > a @29
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() = V& — ZHT, |z} <a (30)
The continuity of the electric potential across the crack implies that
O(x) =9t — @ =0,z€ L 3D
From Egs. (30) and (31) it follows that
H, 03 + Hpo0%; + Hgoss + Hud = 0 (32)
Thus we have
d=— (Huof + Hypo% + Huo%)/Ha (33)

Equation (33) shows that the parameter d depends only on the applied stress field. This implies that
the inhomogeneous fields induced by the crack depend only on the applied remote stress fields and
the applied remote electric fields have no effect on the inhomogeneous fields.

After determing the parameter d from Eq. (33), the column T is completely determined.
From Egs. (27) and (23), one can obtain h(z), fi(2) and f,(2). Instead of 2z, using z for each
component function in Egs. (9) and (10), one can obtain all the solutions. The intensity factors
can be obtained from Eq. (29)

Ky = v/maoi, K, = Vmaoy
Ky = Vmack, K= vmad
It should be emphasized that the electric displacement I} still has the singularity at the crack tip, de-

spite the continuity of the electric displacement D, and the electric potential across the crack,

3.2 Crack Problem of Homogeneous Material

34

We only discuss the inhomogeneous fields induced by the crack.
3.2.1 Crack front coincides with the poling axis

The constitutive equations have transverse symimetry ,

—0'11_\ (i €2 ¢35 O 0 0 _1 7 1 [0 0 eun]
Oz €z cn €z 0 0 0 Y22 0 €3 E,
033 iz 3 ¢ 0 0 0 Vs 0 0 e3
Oy3 - 0 0 0 ¢cu O 0 2723 B 0 es; O E:l (35)
031 Caq 0 27s es O 0
ol LO 0 0 0 0 (en—ep)/2] 27 L0 0 o0
7 )
D] o 0 es Z” e 0 07[E
DI={0 0 0 es 0 0 23;23 +10 & O|E (36)
a1 en € O 0 O 0 0 & 3
27n
_2712_1

The (x,3) is an isotropic plane, The stress and the displacement can be expressed by complex
potentials as
Oy — 1T = D(2) + 2) + (z— 2) P ()

_ 37
20(u + ). = kP(2) — N2) — (z— )P ()
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On the real axis, we have
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oy — ity = P(2) + N 2)
2p(u + i) = #P(x) — 0(2)

Equation (38) can be represented as

o, = Re{P(2x) + (D},
21, = Re{s®P(x) — N2},

T, = Re{i®(x) — 2(x)}
2mv.. = Re{— in®(2) — iQ(I)}

On the other hand,the complex representations for #, and ¢ given by Pak!®} are

w=u, = 2Re[ ()]

1999

(38)

(39
(40)

4D
42>

(43,44)

(45)

(46)

47

(48

(49

= 2Re[ f,(2)]
The functions ®(z),42(z) can be considered as f; (2}, f;(2). The four eigenvalues are p=p=p
=p=i. We have
o _ 1 ) i L
4p 4p 00 2 2 0
. K { 1 1
A= yy w 0 O B =7 2 0
0 1 0 0 0 1€y
L 0 O 0 1_. L O O 1.615
r1—v 1—2v
Iz ( 2p 0 0 W
R B
Y =y
&, €1s
0 0 2
2t ‘u
i 0 0 2 %
where k=¢% +cu&.
Thus
_ _ 2 2
H,=H,=0, H;= 7615! H, =— 'I;Cu
d= o3
Cuq
Kp=Ky =Kie;s/cu
3. 2.2 Crack perpendicular to the poling axis
The constitutive equations are
(1] e s ce 0 OT (11 ] Fo
02 €13 Ciz €13 0 0| |72 0
33 ciz €3 ¢ O 0 0 Va3 _ 0
T3 0 0 0 Cyq 0 0 2723 0
O3 0 0 0 0 (en—a)/2 0|27, 0
Lo12 L O 0 0 0 0 Caad L2712 L€15

0

0

ieys

— 1€y,

€31 0T
€33
€31 0
0 e
0 0
0 0J
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7
D 0 0 0 0 0 e Z“ a 0 07[k
Dl=les e en 0 0 0 23;23 + 10 & O0]|E (50)
0 0 0 es 0 O 0 0 &
2731
L2712 ]
The eigen problem (8) becomes
cuteufp (cuntcdp 0 (esy + es) P (@
(ciz + ca)p  Cas + e 0 es + entf a, _ 0 1)
0 0 (c11 — ¢12)/2 + cupf 0 as
(ess + es)p es + entF 0 — &y — & pd la,
The eigen equation is
ey —ciz + 2cuf) (o +app +aff +c) =0 (52)

where
€o =Cuels + Ccucus
¢ =cunlen + e5)? — 2ci3e53 (e + e15) + 11655 — 2Cuenes
+ cacuen + (cucss — fs — 2c1500) &
o =2c1101565 — 2czei5(e1s - en) + cueh + (enecss — ¢k — 2c13c0)80 + cricuss
¢ =cnels + cncudn (53)
Referring to the work by Sosa and Park!**] one can obtain A ,B,H. The matrix H has the fol-

lowing structure

[2 |
& 0 o 0
2 2
O O =
H = ) (54)
0 0 & 0
L e [

The parameters C;,,Cr,Ca,€ and e can be obtained by numerical calculation. From Eq. (54), it fol-
lows that

H,=H;=0, H,;=2/e, Hy=— 2/¢ (55)
Substituting them into Egs. (33) and (34), we have
d= <o (56)
e
Kp=Ky = —Z'KI (57

3.3 Interface Crack Problem
3.3.1 Crack front coincides with the poling axis

For this case, we find
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H. = H, =0 He. = e [9)] + @ 2) T Cﬂ (8D + Cﬂ 2)
41 42 1) 43 k k . M k k
The superscripts (1) and (2) indicate the quantities belong to material 1 and 2 respectively and we

have

(58)

d= e%%)[e%s + 6'44511](2) + e%)[e%s + C44511:]m

T2 (59
Ci})k(Z) —i—cf&’k“) 2
(
Ko Ko = Ku = eDED 4 oD pD (60)
D — N I — (D 1 o
ci}’k(z’ F PRD

Now we discuss the electric field ahead of the crack tip. From the constitutive equation one ob-

tains
E = (cuD — eso) /k (61D
In front of the crack tip, we have

Ef (0) = 2(c§d — eid a53) fo() /D

cietd — cifell

=2 Wdzsﬂ(x), lx} > a (62)

Hence the electric field E; has the singularity at the crack tip. The electric intensity factor is given

by

KE = ppKn (63
gy = Cilel — ciperd ()
=
Cfl})k(Z) + (,'ﬁ)k(l)

Similarly, in material 2, one can find that
Ey (2) = — 2005 /0 (2) = — Ef (o) (65)
This implies that there is a jump of E; across the interface. On the other hand one can easily prove
that the £ has no singularity ahead of the crack tip and continuously across the interface.
Now we look at the electric field near the crack faces. Equations (23) and (27) give
N2 = Brth(z) = AT fi(2), »y>0

, (66)
[:(2) = B7'h(z) = AT fi(2), y<<0
where A=B~!. Thus the component functions are
S, = P (D), ¥y>0
(67)
fil2) = P folz), y<<0
where
4
¢ = D APT,  j=1,2,3; a=1,2 (68)
=1
Equation (14) leads to
U@=Af((D+Af@ (69)
U+ (2 = ABI'Tfi"(» + A, BT T foT (D
Along the upper face of crack
1 . x
Ly —1 (70)
Ut (o) = 2Re{%Y1TfO+ (x)}z_ /a_z%__lzRe{Yl}T — Im{Y )T 7D
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dp* x
~
2 axr {

efVo5 — ciVd) kY = — pyor;
Similarly, one can confirm that
~ 0 x puR
Ef =— ppo5; —— = Ef, |z| < a
& — 2
Ef =— E = (cPd— Vo) [k = ppozs, x| <a

*+ 103 -

(72>

73

(78

It can be seen that the E, is continuously across the crack and has the singularity, but the E, has a

jump without singularity. Within the crack, we have

E':— {)““—1‘—-, Ezzd/en
1 Lr023 eR—

3. 3.2 Crack perpendicular to the poling axis
One can easily find that

1
H41=H43:0! H42:C(T+C—}Z—)’

e

1 1

+ E(I)E(Z) e(l) + e(Z)
E(I) E(Z)

N = . 0"2*2’
e(l)e(z) e(l) + 5(2)

H,=—

The parameter d depends only on the o7,
Kp= Ky = pK,

(1)6(2) e(]) e(Z)
= .
{0 e(l)e(Z) E(]) E(Z)

From Eq. (9), it follows that

Y = ZRel:iAUzﬁ(:k)]
k=1
El = ZRE[EI‘}A‘uﬁ(Zk)l

E =— 2Re[Z4}A4mﬁ<zk>]
k=1

Substituting (67) into the above equations one finds that

E =— zRe[i)AuBgmmzk)]
k=1

1=1

E =— 2Re[2A4kB;51Tmfé<zk>]

On the real axis,

= ZIm{ i 41Tf:)}

E =— ZRe{ EAuzﬂCkﬁ)}

(75)

(76>

P

(78)

a9y

(80

(81)

(82)

(83

(84

(85)

One can easily prove that B =F; , and generally speak Ef#£E;. The E,, E, have singularity at

the crack tip.

Along the crack faces, Ef =E;, and generally speak Ef #£E;. The Ef, E; , K, E; have



+ 104 - ACTA MECHANICA SOLIDA SINICA 1999

singularity.

The governing equations (26), (27) and (31) are also valid for a class of boundary probems
including many cracks on the interface. Let L denote a set of cracks on the interface. Now Eq. (7)
should be met for each crack. The governing Egs. (26),(27) and (31) do not involve any material
parameters. Hence the solution can be directly obtained, provided the corresponding solutions for a

homogeneous isotropic elastic solid are known.

V. CONCLUSION AND DISCUSSION

The interface crack problems of piezoelectric bimaterials are analysed based on the boundary
condition of the continuity of normal electric displacement and electric potential across the crack
faces. The explicit analytic solutions are obtained for a single crack in piezoelectric or on the inter-
face of piezoelectric bimaterials. A class of boundary problems involving many cracks is also
solved.

It is revealed that the inhomogeneous mechanical and electric fields induced by the crack only
depend on the applied remote stress fields. The applied electric fields have no effect on the inhomo-
geneous fields,

For homogeneous materials it is found that the normal electric displacement I induced by the
crack is constant along the crack faces which depends only on the applied remote stress field, Within
the crack slit, the total electric fields are also constant, which are much larger than the remote elec-
tric fields in the matrix,

For the bimaterials with real H, the normal electric displacement D) is also constant along the
crack faces and has the singularity ahead of the crack tip despite the continuity of normal electric
displacement and electric potential across the crack faces. The electric field E, has the singularity a-
head of the crack tip and a jump across the interface,

The theoretical study(?*? shows that the applied electric field should inhibit crack propagation ir-
respective of its sign, Park and Sun?! measured the failure stresses of cracks perpendicular to the
poling axis in compact tension and three-point bending specimens made of PZT-4 ceramics and
found that the failure stresses decreased with an increase of the positive applied electric field(in the
same direction as the poling axis) and increased with an increase of the applied negative electric
field. They argued that the fracture process of ceramic materials is a pure mechanical process and
should be controlled only by the mechanical part of the energy release rate.

The energy release rate can be calculated by the following integral

G= —I—J.ltT(l — 8 (86)
- 20}

where [ is an arbitrary small length.

For homogeneous materials or biraterials with real H, substituting Egs. (29) and (30) into
(86), we obtain

1

G= %aTTHT = KHk (87)
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From Egs. (31) and (32), one can conclude that the energy release rate G depends only on the
mechanical forces and the applied electric field has no contribution to the energy release rate, which

seems to support the argument given by Park and Sunt?],
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