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plastic shear failure 

Abstract It is proved that Johnson's damage number is the 
sole similarity parameter for dynamic plastic shear failure of 
structures loaded impulsively, therefore, dynamic plastic 
shear failure can be understood when damage number 
reaches a critical value. It is suggested that the damage 
number be generally used to predict the dynamic plastic 
shear failure of structures under various kinds of dynamic 
loads (impulsive loading, rectangular pressure pulse, ex- 
ponential pressure pulse, etc.,). One of the advantages for 
using the damage number to predict such kind of failure is 
that it is conveniently used for dissimilar material modeling. 

Vorhersage des dynamisch-plasfischen 
Scherversagens von Konstruktionen durch die 
Johnsonsche Schadenszahl 

Zusammenfassung Es hat sich erwiesen, daft allein unter 
Verwendung der sog. Iohnsonschen Schadenszahl des 
dynamisch- plastische Scherversagen von stoflartig bela- 
steten Konstruktionen beschreiben werden kann, sofern 
ein bestimmter Wert dieser Kennzahl erreicht worden ist. 
Die generelle Verwendung dieser Kennzahl zur Vorhersage 
des dynamisch-plastischen Scherversagens yon Konstruk- 
tionen, die einer dynamischen Belastung (stot3artige Be- 
lastung, Druckimpulse, steigende Druckbelastung u.s.w.) 
ausgesetzt sind, wird daher vorgeschlagen. Diese Kennzahl 
wird bereits erfolgreich zur Beschreibung unterschiedli- 
chef Materialverhaltensweisen eingesetzt. 

List of symbols 
D n  

H 
I 

.(t) 
k, k' 

Po 
S 
ti 

damage number 
thickness of structures 
impulse of rectangular pressure pulse 
effective impulse of applied load 
Heaviside function 
material constant 
magnitude of rectangular pulse 
sliding displacement 
time when plastic deformation ends 
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ty time when plastic deformation begins 
To time 
V0 initial velocity 
p material density 
a0 yield stress of material 
z duration of rectangular pressure pulse 

Subscripts 
m model 
p prototype 

1 
Introduction 
Both experimental and theoretical studies involving dy- 
namic failure analysis of beams and plates show that 
transverse shear failure is a fundamental mode of struc- 
tural failure under large intensive loading [1-9]. Menkes 
and Opat [1] observed that transverse shear at the support 
was one of the three basic failure modes for impulsively 
loaded fully clamped strain-rate-insensitive aluminium 
alloy beam (Fig. la), these three basic failure modes 
illustrated in Fig. lb are: 

�9 excessive permanent transverse deflection (Mode I); 
�9 tensile tearing failure at the supports (Mode II); 
�9 transverse shear failure (Mode III). 

Similar to Menkes and Opat's experiment, Teeling-Smith 
and Nurick [2] observed the similar three major failure 
modes for impulsively loaded circular plate. As with the 
circular plate, Olson, Nurick and Fagnan [3] also observed 
the three similar major failure modes for blast loaded square 
plate. Liu and Jones [4] conducted an experimental inv- 
estigation into the dynamic plastic response and failure of 
strain-rate-sensitive mild-steel beams due to concentrated 
impact loads, they found that the beams were dominated by 
shear failures. Jouri and Jones [5] have found experimen- 
tally that the transverse shear severance of beams in double 
shear loading occurs at a shear displacement which is much 
smaller than the beam thickness. On the basis of Menkes and 
Opat's experiment [1], Jones [6] carried out an approximate 
theoretical study of this problem for predicting the onset of 
these three failure modes. Duffey [7] found that hard-point 
shear failure in cylindrical shells is adequately predicted by 
the theory for shear failure in beams, by studying two 
loading cases (i.e. rectangular pressure pulse and expo- 
nential pressure pulse). Zhao et al. found that consideration 
of the influence of rotatory inertia and the presence of crack 
increases the initial kinetic energy required to cause dy- 
namic plastic shear failure [8, 9]. 
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Fig. 1. a Impulsively loaded fully clamped beam, b Three typical 
failure modes 

There has been an analogy between failure of solid and 
turbulence [10, 1 i]. Turbulence occurs when Reynolds 
number Re, a similarity parameter in fluid dynamics, 
reaches a critical value. This would be instructive for the 
study of dynamic plastic shear failure of structures. The 
objective of the present paper is to apply the universal 
dimensional analysis to the structural dynamic plastic 
shear failure analysis, and derive the general dimension- 
less condition for this kind of failure. 

2 
Similarity consideration of dynamic plastic shear failure 
of structures 
It is believed that Hopkinson's "cube-root" scaling in 1915 
[12] proposed to the British Ordnance Board to be the first 
statements on the applicability of the similarity concept to 
the assessment of structural response to dynamic loads 

[13]. Since then, similarity methods have been widely used 
in impact dynamics. Generally speaking, there are two 
kinds of modeling [14]: the first one is called replica 
model, which is geometrically similar in all aspects to the 
prototype and employs identically the same materials at 
similar locations; Another one is called dissimilar material 
model, which is geometrically similar to a prototype but 
made of different material. 

For a piece of material subjected to impulsive loading, 
or impinged by an initial impulsive velocity V0, Johnson's 
damage number is defined by [15] 

Dn = pV2/ao , (1) 

where p and a0 are density and yield stress of the material, 
respectively. Johnson's damage number is a basic dimen- 
sionless similarity parameter in impact dynamics. Actu- 
ally, the damage number can be obtained by making 
dimensionless the motion equation. As an example, the 
well-known motion equation of the material for one di- 
mensional problem is 

8a 5V 
0x -- p 0t ' (2) 

where a and V denote stress and particle velocity, res- 
pectively. To make dimensionless (2), we introduce the 
dimensionless variables as follows 

E = a / a o ,  z = t / T ,  X = x / ( V o T ) ,  V = V / V o  , 

(3) 
where T is a characteristic time. By using transformation 
(3), we can render (2) into a dimensionless one as 

o z  _ 

5X ao Ov (4) 

It is evident from (4) that the damage number is a dominant 
dimensionless parameter for the dynamic plastic response 
of material. Damage number can be understood as a mea- 
sure of the order of strain imposed in the region where 
severe plastic deformation occurs, it can also be considered 
the ratio of inertia force of the loading (PVo) to the resis- 
tance ability of the dynamically loaded material (or0), so 
damage number can be regarded as a measure of the fluid- 
like (hydrodynamic) behavior imposed in the region of se- 
vere plastic deformation during high velocity impact [16]. 

Consider a fully clamped rigid, perfectly plastic beam 
(illustrated in Fig. la) with thickness H and unit width 
subjected to uniformly distributed impulsive loading V0. 
The relative sliding displacement [S] at the hard point can 
be expressed by the following general function 

[S] = F(p, V0, ~0, H) , (5) 

where p and a0 are the mass density and yield stress, 
respectively. It is noted that the length of the beam does 
not inter (1) for dynamic plastic shear failure at the sup- 
ports. By using Buckingham's 7>theorem, we can render 
(5) into a dimensionless functional relationship as follows 

[SI/H = f (PVo/ao)  . (6) 

Eq. (6) means that dynamic plastic shear failure under 
impulsive loading can be predicted by damage number 
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Dn. In other words, dynamic plastic shear failure can be 
considered when damage number reaches a critical 
value. 

For complete shear failure at the hard points [S]/H = 1, 
then from (6) we have the shear failure condition as 

Dn = const (7) 

In fact, Jones [6] obtained the condition for complete 
shear failure as 

2 /  o0 
V0 = 7 2 -  (8) 

P 

Obviously, (8) can be rewritten as 

Dn = 8/9 (9) 

Actually, shear failure occurs when [5] 

[S]IH = k , (10) 

where 0 < k < 1, k is a material constant to be determined 
by experiment, complete severance occurs when k = 1, but 
transverse shear failure is likely to develop for a smaller 
value of k for beams [51. The same situation is likely to 
occur for plates; there has been no experimental in- 
vestigation concerning the determination of material 
constant k as far as the present author is aware. The value 
of k may be larger for ductile materials, and smaller for 
brittle materials [8]. Generally, shear failure at the hard 
points occurs when 

Dn = 8 k '  (I1) 
9 ' 

where k' can also be considered a material constant. Be- 
sides impulsive loading, rectangular pressure pulse is an- 
other idealized dynamic loading. Rectangular pressure 
pulse can be described by 

p(t) = po[H(t) - H ( t -  z)] , (12) 

where P0 is the magnitude of the dynamic pulse, z the 
duration of the pulse, H(t) the Heaviside function. The 
impulse of such kind of pulse is 

I =p0z  �9 (13) 

For such pulse, the damage number equivalent to the case 
of impulsive loading is given by 

12 
Dn P~176 2 (14) 

The general functional relationship for the relative sliding 
displacement at the hard points is 

[S] = F(p,p0, r, 00, H) . (15) 

By using Buckingham's 7>theorem we have the following 
simplified relationship as 

[S]/H = f (Dn,  cro/Po) . (16) 

The damage number in (16) is expressed by (14). For 
complete shear failure [S]/H = 1, (16) can be rewritten as 

Dn = @(Oo/Po) �9 (17) 

As a matter of fact, the analytical solution of complete 
shear failure at the hard points presents [7] 

12 1 

8H2po0 -- 9(1 - 4o0/9p0) (18) 

It is required that P0 > } o0 for shear failure to occur. 
Similarly, the generally condition for shear failure in the 
case of rectangular pressure pulse is 

8k' 
Dn = 9(1 - 4o0/9p0) (19) 

It is easy to note that (19) can be reduced to (11) when 
ao/Po --+ 0 and z + 0. 

For dynamic loading of general shape, the damage 
number analogous to the case of impulsive loading is 

D n - -  /2 (20) 
paoli  2 ' 

t . . . .  
where Ie = f / p ( t ) d t  is the effectwe xmpulse of the apphed 
loading p(t),Yty and tf are the times when plastic defor- 
mation begins and ends. Duffey [7] also studied the dy- 
namic plastic shear failure of a fully clamped beam 
subjected to exponential pressure pulse 

p( t) = Po e x p ( - t / T o )  (21) 

The effective impulse of the exponential pressure pulse is 
then 

Ie = poT0[1 - e x p ( - t f  /To) ] . (22) 

Duffey obtained the complete hard-point shear failure 
condition as 

RH 2 (Po ~)  2t~ (23) 
a o T o -  7 o -  tf--9~oo 

4 It is also required that P0 > ~ o0 for shear failure to occur 
in case of exponential pulse expressed in (21). (19) can be 
rearranged into the following by the present paper as 

8 1 
Dn 9 p0r0 (9 ~ )  ' (24) 

aoty - 2 - 1 

where the damage number Dn is expressed in (20) and the 
relation 

9 P0 r0[1 -exp(-q/ro)] ts =7 00 

given by Duffey in [7] has been used. (24) means that 
complete shear failure condition for dynamic loading of 
general shape can be also considered when damage 
number reaches a critical value, it is easy to see that (24) is 
analogous to (19) and (I 1). Similarly, the general failure 
condition for (20) is 

8 k' 
= - (25) 

Dn 9 P~ ! (9_ 2 ~ ) - 1  

3 
Discussion 
If the dynamic loading of the experiment by Menkes and 
Opat [I] is considered approximately a rectangular 

351 



35z 

Forsch Ingenieurwes 63 (1998) 

Table 1. Value of Dn in (14) of reference [1] 

Beam thickness Impulse 

(in) (mm) (ktaps) (Ns) 

0.187 4.75 40 4000 0.92 
0.250 6.35 48 4800 0.74 
0.375 9.53 65 6500 0.60 

For a0 ~ 285MPa; p = 2700 kg/m 3 

Dn 

(eqn 14) 

pressure pulse, we can calculate the values of the Dn in 
(14) for three different impulses, which are given in Table 
1. It is shown in Table 1 that the larger the impulse, the 
smaller the value of  Dn for the occurrence of shear failure. 
This is simply because that the higher the impulse, the 
more accurate the approximation of  the rigid, perfectly 
plastic model and the more localized the deformation. 
Actually, any real dynamic loading has a rise time to reach 
its peak value, when the rise time could not been ignored, 
then (20) should be used, this can be one explanation 
when the first value of  Dn in Table 1 is slightly larger than 
8/9. 

From first glimpse it changes nothing from (8) to (9) or 
from (18) to (19), nevertheless, from the point of  view of  
similitude, (9) and (19) are more reasonable. For dissim- 
ilar modeling, (11) gives 

Pm V2om aop __ k~ (26) 
lopV2pffom kip ' 

where subscripts m and p refer to model and prototype, 
respectively. (26) gives the law that modeling should abide 
by. Especially, if constitutive similarity is met, then we 
have k~ = k~, in such case (26) reduces to 

Pm W2m o-0p __ 1 . (27) 
p p V2p 6om 

Constitutive similarity means that model and prototype 
materials have homologous constitutive properties and 
homologous stress-strain curves [14]. 

From (19) we have the following similitude conditions 
of  replica modeling as 

{ [p~zZ/(paoH2)]m= Ip~z2/(p~roHZ)]p 

k m = k'p . 

(28) can be further reduced to the following form 

{ (P0"E2~ __ //P0"C2"~ 

z 
(29) 

4 
Conclusion 
To summarize, this paper suggests that Johnson's damage 
number  be used to predict the dynamic plastic shear 
failure of  structures subjected to large intensive loading. 
Dynamic plastic shear failure can be considered when 
damage number reaches a critical value. Similitude con- 
ditions are derived for replica and dissimilar modeling for 
structures subjected to impulsive loading as well as rect- 
angular pressure pulse. 
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