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ABSTRACT: Processes of the onset oscillation in the thermocapillary convection 

under the Earth's gravity are investigated by the numerical simulation and exper- 

iments in a floating half zone of large Prandtl number with different volume ratio. 

Both computational and experimental results show that the steady and axisymmetric 

convection turns to the oscillatory convection of m ---- 1 for the slender liquid bridge, 

and to the oscillatory convection before a steady and 3D asymmetric state for the 

case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers 

related, respectively, to these two bifurcation transitions for the fat liquid bridge. The 

computational results agree with the results of ground-based experiments. 

K E Y  W O R D S :  thermocapillary convection, microgravity fluid, numerical simula- 
tion, experiment 

1 I N T R O D U C T I O N  

The thermocapillaxy oscillatory convection in the floating half zone has been extensively 
studied since the middle of 1970s[ 1~3]. The process of onset oscillation and the mechanism 
of the thermocapillary oscillation are interesting due to its importance in both the basic 
research of microgravity fluid physics and its applications to materials processing. The 
theoretical studies on the onset of the oscillatory thermocapillaxy convection in the micro- 
gravity environment have been carried out in cases of the infinite planner layer [4] , the infinite 
cylindrical liquid bridge[ 5] and the finite liquid bridge [6,7] for large or small Prandtl  number 
fluid by using the method of linear stability analysis. The direct numerical simulations of a 
three-dimensional and unsteady model are applied to investigate the evolutionary process of 
onset oscillation, and give the flow field and temperature distribution of the thermocapillaxy 
convection Is~l~ A number of ground-based experiments of small-size liquid bridge have 
been conducted to study the onset of the oscillatory thermocapillaxy convection. The exper- 
iments discovered that  the critical applied temperature difference ATe depends sensitively 
on the volume ratio of the liquid bridge V/Vo, in addition to the aspect ratio A = g/d, and 
both of them axe important critical geometrical parameters[ 11]. 
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In the present paper, the transient process in a 10 cst silicon oil liquid bridge of 5 mm 
in diameter is investigated numerically and experimentally for two typical cases of a slender 
liquid bridge and a fat liquid bridge. The results of the numerical simulation agree well 
with those of experiments, and the experimental results give the transient process of two 
bifurcations in a fat liquid bridge for the first time. 

2 N U M E R I C A L  S I M U L A T I O N  

2.1 T h e  P h y s i c a l  M o d e l  
The numerical model is a floating half zone between two parallel and co-axial copper 

rods of 5 mm in diameter and 2.5 mm in height, and the liquid medium is 10 cst silicon 
oil ( P r  = 105.6). The temperature T~ at the upper rod is higher than temperature T~ 
at the lower rod, and the temperature difference is AT I = T ~ -  T~. The configuration of 
the liquid bridge is shown in Fig.l,  and the cylindrical coordinate system is adopted. The 
numerical simulation was performed for two typical cases of volume ratios V / V o ,  where V 
and V0 are, respectively, the volume of the liquid bridge and the volume of a cylinder with the 
same height and diameter. The direction of z-axis is opposite to the gravity vector. The free 
surface shape of the liquid bridge is determined by using the static condition of an isothermal 
liquid bridge under the earth's gravity, and is not changed during the computational process. 

Fig.1 Schematic diagram of a liquid bridge 

By using the Boussinesq approximation, the three-dimensional and time dependent 
Navier-Stokes equations and energy equation may be obtained. A constant temperature 
T. ~ = (T~ + 100)~ is adopted as the reference temperature in the present paper. The 
following dimensionless quantities axe defined 
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7 ' ~ -  - -  z - ~  - -  U - -  V ~ - - -  W ~ - - -  r -  
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(2.1) 

where superscript prime denotes the dimensional quantities, for examples, (u r, v t, w r) is the 
dimensional velocity vector, a, j3, g, ~, i, cOa/OT and g are, respectively, the surface tension 
coefficient, the thermal expansion coefficient, the kinematic viscosity, the thermal diffusion 
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coefficient, the height of the liquid bridge, the temperature gradient of the surface tension, 
and the earth's gravitational acceleration. The typical velocity U~ = ]cOa/OT] (T~. - T ~ ) / p v  is 
obtained from the equilibrium condition of the tangential stress at the free surface. The Re, 

Gr, and M a  are, respectively, the Reynolds number, the Grashof number and the Marangoni 
number with the relationship M a  = R e .  Pr ,  where P r  = v / ~  is the Prandtl number. 

The vectors of the stream function r and the vorticity oJ are introduced, respectively, 
in the  dimensionless cylindrical coordinate system (r, 0, z) as follows [12] 

V x r = V (2.2) 

V x V : ~ ( 2 . 3 )  

Then, the dimensionless equations can be written as 

V x V x r  

0w 1 ( ~2 ) 
~ - + V . V o ~  ~ , . V V  Re V2~+p--~-~-~ V x F  

cO--~- + V .  V T  = V2T 

The boundary conditions are as follows 

~ z  
z = O  and z = l :  r 1 6 2  COz = 0  

COy Ou 
wr = COz wO = ~z  

at both the upper and lower boundaries z = 0 and z = 1 

T ( r ,  o, 0, t)  = o 

T(r,  O, 1, t) = f ( t )  

Wz ~ 0  

where dimensional a T  is a constant heating rate, and function f ( t )  = 
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at the free surface of the liquid bridge, which is a rotational surface and symmetric to the 
z-axis, and can be described as r = f ( z ) .  
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2.2 C a l c u l a t i o n  M e t h o d  
The hybrid method of fractional step[ 12] is used in the present paper. The numerical 

meshes are 12 • 16 x 12 in r, 0, z directions, respectively, and the floating half zone is divided 
into 10 758 quadrilateral volume elements associated with 2 064 nodes, including 172 nodes 
in every layer. In order to consider the non-linear convective effects, the vorticity and 
energy equations are divided into the convection and the diffusion parts. The characteristic 
line method and the FEM method are used, respectively, for the convective terms and the 
diffusion operators. 

The applied temperature difference AT'  increases gradually from zero at the beginning, 
and the heating rate is 0.1 ~ The initial values of the temperature and the velocity are 
a constant and zero, respectively, in the liquid bridge. 

The onset of thermocapillary convection is related to the grid adopted in the calcula- 
tion. For checking the present numerical program, the thermocapillary convection calculated 
for a cylindrical liquid bridge with g = 0 and g/do = 10 is compared with those obtained 
from linear stability analysis for infinite length, cylindrical liquid bridge[ 5] and calculated by 
using three-dimensional axisymmetric program. The results are in a quite good agreement, 
apart  from a maximum error 14% at the meshes near the free surface. It shows the core 
velocity profile for buoyancy convection in a horizontal cylinder of the present calculation 
agrees well with the results of Bejan et al. [13]. The calculated results for different grids are 

shown in the following Table 1. 

Table 1 The  calculated results  for different grids 

Grid (nr x n8 • nz) ,'XT'I/~ Umax T 
AT = 4~ z/s = 0.55 AT' = 4~ z/s = 0.55 

12 • 16 x 12 5.17 -5.019 • 10 - 2  0.731 
16 x 24 x 16 4.69 --5.270 x 10 -2 0.715 
12 x 24 x 12 3.18 - - 

The same unstable modes of thermocapillary convection were shown qualitatively in the 
calculation for three different grids, The relationship between critical temperature difference 
and volume ratio calculated by using the present program agrees also well with experimental 
results[hi. 

2.3 C a l c u l a t i o n  R e s u l t s  
It is usually considered that  the steady and axisymmetric thermocapiUary convection 

becomes the oscillatory convection when the applied temperature difference is larger than a 
critical one in the case of large Prandt l  number liquid bridge. The linear stability analyses [7] 
and the three-dimensional numerical simulation Is~l~ demonstrated that  the steady and 

axisymmetric thermocapiUary convection turns to the oscillatory convection via the steady 
and axial asymmetric convection in the case of small Prandtl  number fluid. The similar 
conclusion holds in case of a fat liquid bridge with larger Prandtl  number [n,14] . 

The quantities 5v = (Vmax - -  Vmin)/Umax and 5 T = (T'ma x - T'min) /AT '  were used to 
describe the variations of the velocity and temperature fields in the transition process dur- 
ing increasing of the applied temperature  difference In]. Vm~x, Vmln, T'm~x and TImin a r e  the 
maximum and the minimum values of the azimuthal velocity components and the tempera- 
tures at the free boundary of the horizontal cross-sec~ions with z / l  = 0.55, and Um~x is the 
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maximum velocity in the liquid bridge corresponding to the applied temperature  difference 
AT' .  

For studying the case of two-bifurcation transition, the temperature  difference relating 
to the condition ~v/2 = 1% is defined as the first critical temperature differences ATe1. 
The steady and axisymmetric thermocapiUary convection turns to the steady and axial 
asymmetric convection if A T  ~ is a bit larger than ATe1. The second critical temperature 
difference is ATe2, which is defined as the onset of temperature  oscillatory in a thermocap- 
illary convection. In the case of oscillatory convection , the applied temperature  difference 
is larger than ATe2. ATc~I and ATe2 depend on the volume ratio of liquid bridge V/Vo. The 
temperature  evolutionary processes of four points at the boundary of horizontal section at 
z i g  = 0.55 are shown in Fig.2 for the case of the slender liquid bridge 17/17o = 0.8 (Fig.2(a)) 
and a fat liquid bridge 0.985 (Fig.2(b)). It  shows that  the steady and axisymmetric con- 
vection turns directly to the oscillatory one for a slender liquid bridge V/Vo = 0.8, and 
the oscillation mode is m = 1. In this case, there is only one bifurcation relating to the 
onset of oscillation, ATe1--20.118~ Rec =32.275 and M a c  =3408.  For the case of the 
fat liquid bridge V/Vo = 0.985, the first critical temperature  difference ATc~I = 5.17~ and 
the second critical temperature  difference ATe2 = 41~ The related Reynolds numbers are 
8.3 and 65.78, and Marangoni numbers are 876 and 6 946. The velocities of four points are 
separated before oscillation and the oscillation mode is m = 2. If the applied temperature 

difference is fixed at 30~ which is higher than ATctl and lower than ATe2, for the fat liquid 
bridge V/Vo = 0.985, the azimuthal velocities are different and unvaried with time at four 
boundary points. The steady and axial asymmetric temperature  distribution and flow field 
in the horizontal cross section z / g  = 0.5 are observed in upper and middle of Fig.3 and 
the relating normal flow field is shown in the lower of Fig.3, which looks like a symmetric 
one. The convection is steady and asymmetric. It means that  the steady and axi-symmetric 
thermocapillary convection turns to the steady and axial asymmetric convection for the fat 

liquid bridge (V/Vo = 0.985) when ATct2 > AT '  > ATc~I. 
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Fig.2 The transient feature of azimuthal velocity 

Furthermore, the steady and non-axisymmetric convection turns to the oscillatory con- 

vection if AT  t > ATe2. The temperature  profiles in one period in a horizontal cross-section 
at z / s  = 0.5 are given in Fig.4 for a fat liquid bridge of V/Vo = 0.985 (m = 2). The configu- 
rations rotate  at a frequency the same as tha t  of the related flow-field patterns,  however, the 
fluid particles do not rotate. Same rotating patterns of the azimuthal velocity are observed by 
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Fig.4 The evolutions of temperature distribution (upper) and azimuthal ve- 
locity field (lower) in the oscillatory convection (V/Vo  = 0.985, z = 0.5) 

the ground-based  experimentB5]. The  ro ta t ing pa t te rns  of t empera tu re  and flow field nearly 

keep their configurat ion during the  ro ta t ing  process, and the results disagree with tha t  of 

the paperB6], which suggested tha t  the  fluid rota tes  together  with the pat tern.  

The  onset process of the fat liquid bridge is quite different f rom tha t  of the slender 

one. The  onset processes of oscil latory convection for bo th  liquid bridges are described by 
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5v as shown in Fig.5. For both liquid bridges, the thermocapillaxy convection is steady if 
the applied temperature  difference AT  ~ axe smaller than the critical value ATr and the 
velocity field and temperature distribution are axisymmetric. Therefore, 5v and 5T axe 
small and close to zero. In the case of slender liquid bridge, for example, V/V0 = 0.8, 
the steady and axisymmetric convection turns to the three-dimensional and time dependent 
oscillatory convection in a short t ime period, and the value of 5v increases rapidly. The case 
of slender liquid bridge was discussed in detail in [11]. For the case of the fat liquid bridge 
V/Vo = 0.985, the oscillatory velocity is excited in a longer period during increasing of the 
applied temperature difference. 

y/wo = o.s / 
0.6 

0.0 
0 10 2O 3O 4O 5O 

AT'/~ 

The transient process described by the parameters 6v and 6T Fig.5 

0.4 

3 E X P E R I M E N T S  

3.1 Experimental  Condit ion 
The liquid bridge adopted in the experiment has the same geometric configuration and 

physical parameters as those in the calculation. The liquid bridge of 10 cst silicone oil is 
floated in the gap between two co-axial disks with the same diameter do = 5 mm. The lower 
disk consists of a copper. The upper disk is transparent for observation of the flow pat tern  
in the horizontal cross-section, and consists of transparent K9 glass disk fitted well by a 
surrounding copper heater, which does not in contact with the liquid bridge and is around 
the glass disk as shown in Fig.l(a).  The thickness of the circular glass disk is h -- 5ram. 

The temperatures are measured by thermocouples at both sides of the solid disks. A 
PID-controller (EUROTHERM 904 controller) is used to control the heating rate, and the 
temperature  difference between the upper disk boundary at free surface and the lower disk. 
A Flowmap PIV system is used to measure quantitatively the velocity distribution of the 
flow field in a horizontal cross-section of the liquid bridge. The hollow glass spheres of 
10 #m in mean diameter are suspended in the,liquid bridge as particle tracers. The density 
p -- 1 .1g/cm 3 of tracer particles is close to the density p -- 0 .94g/cm 3 of 10cst silicone 

oil. A horizontal cross-section of the liquid bridge is illuminated by a light-sheet of 0.3 mm 
thickness of an argon ion laser with power of 1.0 W. Another light-sheet of a He-Ne laser 
is applied vertically for the horizontal cross-section measurement, with the laser power of 
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5 mW. An 80C42 Double Image 700 camera is used to record images in the PIV system. The 

illumination system and camera are controlled automatically by a synchronization board in 

the P IV  2 000 processor, which processes images into vector results in real-time. Vector map 

acquisition at a frequency of 15 Hz makes it possible to distinguish whether the flow field is 
in a s tat ionary state in a liquid bridge. 

3.2 T r a n s i t i o n  P r o c e s s  for  F a t  L i q u i d  B r i d g e  

The tempera ture  difference A T '  between two ends of the liquid bridge is applied, lin- 

early increasing with time. The heating rate of the experiment is 4.0~ The evolution 

of thermocapil lary convection is observed during the increasing of the tempera ture  differ- 
ence. In this process, the velocity distribution in the horizontal cross section at z/g = 0.25 

of the liquid bridge is measured by using PIV in real time, and the successive vector maps 

are captured at t ime intervals of 66 ms. 

The comparison of successive frames of velocity field can indicate clearly the process 

of symmet ry  breaking and the onset of oscillation. It  is observed that ,  the steady and axis- 

symmetr ic  flow turns to a steady and asymmetr ic  flow for a fat liquid bridge with small aspect 
ratio. Figure 6 displays a typical example of asymmetric,  three-dimensional s tat ionary flow 

configuration in a fat liquid bridge of aspect ratio A = 0.5 and volume ratio VIVo = 1.1. 
When the applied tempera ture  difference increases to and keeps at A T '  -- 22~ which is 

higher than  the first critical value for onset of the asymmetr ic  convection and lower than 
the second critical value for onset of oscillation, the velocity distributions are asymmetric 

and steady. Figures 6(a) and 6(b) show two velocity distributions in the same section 

zl~ -- 0.25 but  with 120 s of t ime duration, and the flow pa t te rn  keeps nearly the same. The 

t ime evolution of the azimuthal velocity at same radius r -- 2.2 m m  but  different azimuthal 

angles 17 = 140 ~ and 0 -- 230 ~ in a cross-section z l i  -- 0.25 was shown in Fig.7 in case of an 

applied tempera ture  difference A T '  = 20.4~ It  shows tha t  the asymmetric  velocity field is 

independent of time. 

In order to verify the calibration and validation of the experimental  technique, the 
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Fig.6 The steady and asymmetric distribution of velocity in a horizontal cross-section (z/s = 0.25) 
of a fat liquid bridge (V/Vo = 1.1) at different time when temperature difference AT'  ---- 22~ 
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Fig.7 A graph for the variation of azimuthal velocity with time at two fixed points 
(r = 2.2ram, 0 = 140 ~ and 0 = 230 ~ z / l  = 0.25) of flow field in a horizontal 
cross-section of liquid bridge when temperature difference AT' = 20.4~ 

velocities of a model, whose input parameters are the direction and magnitude of the flow 
at a fixed point in a liquid bridge, were measured as reported in Ref.[15]. The velocity 
measurement accuracy is bet ter  than 5%. In the present experiment, the measured radial 
velocity is much larger than the azimuthal velocity. By using the PIV method, it should 
be remembered that  the accuracy is in an absolute value, and a larger measurement error 
may appear in case of a small velocity value than that  of a large velocity value, although 
the accuracy is generally expressed as a percentage of the measured fuU-scale velocity. The 
radial component of velocity can be measured with much bet ter  accuracy than the azimuthal 
velocity component. 

To estimate the asymmetric degree of velocity distribution, a characteristic velocity 

AVJ = IVJmax - VJmin I is introduced, where VJmax and VJmln are, respectively, the maximum 
and minimum value of azimuthal velocity at radius r = (2.2 -t- 0.05) mm in a cross-section 
z / i  = 0.25. Figure 8 summarizes the experimental results of asymmetric degree AVe t de- 
pending on the applied temperature difference in case of a fat liquid bridge V / V o  = 1.1 
(circle marks), and case of a slender liquid bridge V / V o  = 0.8 (square marks). It could be 
seen that  AV~ keeps a lower constant and then has a sharp increment at AT'  ~- 23~ related 
to the onset of oscillation during the increasing of the applied temperature  difference for the 
case of volume ratio V / V o  = 0.8. However, AVJ keeps constant when applied temperature 
difference AT '  < 13~ and then increases gradually with the applied temperature  difference 
A T  before the onset of oscillation for the case of volume ratio V / V o  - 1.1. The asymmetric 
degrees of velocity distributions AVJ remain nearly AVJ = 0.21 ~ 0.25 mm/s  for different 
liquid bridge volumes when the temperature differences are lower. AV~ is considered to be 
caused by the system errors of the experiment. 

For the case of V / V o  = 1.1, the onset of the first bifurcation may be defined by the 
moment AV~ = 0.25 ram/s, and it gives 

AT'I = 13~ (3.1) 

This value relates to the transition from the steady and axisymmetric convection to the 
steady and asymmetric convection. The critical value of the applied temperature difference 
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Fig.8 The relationship between asymmetric  degree AV~ and temperature  dif- 
ference AT '  for the different volume ratio V/Vo = 0.8 and V/Vo = 1.1 

r e l a t ed  wi th  onset  of osc i l l a to ry  m a y  be  given, exper imenta l ly ,  as 

ATcl2 = 30.4~ (3.2) 

T h e  sequence of  flow p a t t e r n  in a hor izon ta l  cross-sect ions  at  z / s  = 0.60 in one pe r iod  

of osc i l la t ion  for the  case V/Vo = 1.1 is given in Fig .9  for A T  ~ ---- 32~ In  th is  case, 

the  osc i l l a to ry  f requency is 0.92 Hz. T h e  resul t s  show t h a t ,  the  flow p a t t e r n s  a p p e a r  as 

the  a s y m m e t r i c  m o d e m  = 2, and  the  osc i l l a to ry  conf igura t ions  are r e l a t ed  to  a pu l sa t ing  

ins tabi l i ty .  T h e  osc i l la tory  flow is cha rac te r i zed  by  a s t and ing  wave. 
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Fig.9 A sequence of flow pat te rn  in the horizontal cross-section ( z / l  = 0.6) 
in one oscillatory period in a fat liquid bridge. The t ime step is one 
half of the oscillatory period in case of V/Vo = 1.1 and AT '  = 32~ 

3.3 T r a n s i t i o n  P r o c e s s  for S l e nde r  Liquid  B r i d g e  
I t  is observed  t h a t  a x i a l - s y m m e t r y  is lost  a t  the  same m o m e n t  as the  onse t  of osci l la t ion 

in a s lender  l iquid bridge.  T h e  veloci ty  fields measu red  in t he  cross-sect ion z / s  = 0.25 
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for the case V / V o  = 0.8 show tha t ,  once the  mo t ion  is asymmetr ic ,  az imutha l  velocity 

s tar ts  to oscillate. The  t r ans i t ion  po in t  between subcr i t ica l  ax isymmetr ic  and  supercri t ical  

asymmetr ic  s ta te  is de te rmined  exper imenta l ly  for the case V / V o  = 0.8 as 

AT" 1 = AT" 2 = 21.5~ (3.3) 

Figure  10 shows the sequence of flow p a t t e r n  in  one per iod of oscil lat ion of the horizon- 

ta l  cross-sections at z / g  = 0.60 for the  case V / V o  = 0.8 when A T  ~ = 23~ In  this  case, the 

oscillatory frequency is 0.67 Hz. The  results show tha t ,  the flow pa t t e rn s  appear  as a mode 

m = 1, and  oscil lat ion configurat ions are related to a ro ta t ing  instabi l i ty.  The  oscillatory 

flow is characterized by a t ravel ing wave. 

The  t racer  part icle accumula t ion  s t ructures  (PAS) the same as Ref.[17] occurred before 

the onset  of oscil lation in  our exper iments .  Some regions may become tracer-free after some 
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Fig.10 A sequence of flow pat tern in the horizontal cross-section ( z / g  ---- 0.6) in 
one oscillatory period in a slender liquid bridge. The time step is one- 

fourth of the oscillatory period in case of V/Vo  = 0.8 and A T '  = 23~ 
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time, where no flow velocity can be measured any more. I t  is difficult to measure the 
velocity distributions in a horizontal cross-section of the liquid bridge in this case. So only 

the azimuthal  velocity distributions of two typical examples for t h e  case V/Vo = 0.8 and 

V/Vo = 1.1 are selected to make a comparison of asymmetric degree. 

3.4 O n  T r a n s i t i o n  P r o c e s s  

The experimental  results have shown tha t  two bifurcation transitions were observed in 

a fat liquid bridge of large Prandt l  number: firstly from steady and axial-symmetric con- 

vection to the steady and asymmetrical ,  and then to the oscillatory convection at a larger 
tempera ture  difference. The oscillation convection appears  as the mode m = 2, and as a 

"pulsating" flow state for the case of A = i /d0 -- 0.5, V/Vo = 1.1. Two bifurcation transi- 

tions axe not found in the slender liquid bridges of 10 cst silicone oil in our experiments, and 

only one transit ion from steady and axial-symmetric s tate  to an asymmetric  and oscillatory 

state of thermocapil lary convection is observed for the case of A = ~/do = 0.5, V/Vo = 0.8. 
The oscillatory convection appears  as the mode m = 1 and the "rotating" flow state. 

There axe two main reasons about  the selection of the section at z / l  = 0.25 where the 

velocity distributions are measured. On the one hand, a symmet ry  is obvious in this section 

for the case V/Vo = 1.1 when A T  ~ > ATr On the other hand, there are less tracer-free 
regions in this section than  in other sections. The flow is recorded from the top through 

the glass disk. The velocities close to free surface of the liquid bridge can not be measured 

in this section (z /~  = 0.25) because the area of this section is la rger  than  that  of glass 
disk. The azimuthal mode of steady and three-dimensional convection in the liquid bridge 

of 10 cst silicone oil for this case could not be determined in this experiment. 

4 C O M P A R I S O N  O F  T H E O R E T I C A L  A N D  E X P E R I M E N T A L  R E S U L T S  

The  onset of oscillatory thermocapil lary convection under the ear th 's  gravity was in- 

vestigated by bo th  the numerical simulation and experimental  methods. The  liquid bridge 
adopted in the experiment has the same geometric configuration and physical parameters  

as those in the numerical simulation. The calculated results are compared with the exper- 

imental ones for cases of a fat liquid bridge of V/Vo -- 0.985 and a slender liquid bridge of 

V/Vo = 0.8 in Table 2. 

Table  2 C o m p a r i s o n  of  the  numer ica l  s imula t ion  resul ts  and  

the  e x p e r i m e n t a l  resul ts  

Experimental results Computational results 

height of liquid bridge 2.5 mm 

diameter of liquid bridge 5.0 mm 

medium 10 cst silicon oil 

volume ratios 0.8 0.985 

first critical temperature difference 21.5~ 10.5~ 

second critical temperature difference 21.5~ 34.6~ 

first critical Renolds number 34.492 16.8 

second critical Renolds number 34.492 55.5 

first critical Marangoni number 3 642 1 779 

second critical Marangoni number 3 642 5 861 

2.5 mm 

5.0 mm 

i0 cst silicon oil 

0.8 0.985 

20.118~ 5.17~ 

20,118~ 41~ 

32.275 8.3 

32.275 65.78 

3 408 876 

3 408 6 946 
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Both results for the case of a slender liquid bridge are in good agreement, and the 
critical Marangoni number is 3 642 for experiment and 3 604 for numerical simulation. The 
relative difference is only 1 percentage. For the case of fat liquid bridge, the second critical 
Marangoni number is 5 861 for experiment and 6946 for numerical simulation, and the 
relative difference is 17%. Both results are in a reasonable agreement. The first critical 
Marangoni number for a fat liquid bridge is 1 779 for experiment, which is about twice 
as the one of only 876 for numerical simulation. However, both the experiment and the 
numerical simulation proved the process of two bifurcation transitions in a fat liquid bridge, 

5 C O N C L U S I O N  A N D  D I S C U S S I O N  

The three-dimensional steady and asymmetric distributions of the flow field and the 
temperature  field exist before the onset of oscillatory flow, obtained by the three dimen- 
sional and unsteady numerical simulations[ s~l~ and the linear stability analysis [7] in case 
of the small Prandtl  number liquid bridge. Frank and Schwabe [ls] observed also the time- 
independent and three-dimensional flow state in their experiments of thermocapillary con- 
vection of liquid bridge with Prandt l  number = 7, 49, 65, and conjectured that  the broken 
symmetry convection was probably caused by a hydrodynamical instability. 

By using the linear instability analysis, Chen and Hu pointed that  the steady and 
axisymmetric thermocapillary convection can have an instability mode of a steady and axial 
asymmetric state for a fat liquid bridge of large Prandt l  number[ 19]. The computational 

results of liquid bridge under microgravity are consistent with the results of the present 
paper[14]. In the present paper, the flow state with steady and axial asymmetry was observed 
clearly for a typical fat bridge V/Vo = 0.985 if the applied temperature difference A T  ~ = 
30~ is fixed. It means that  there is a transition from steady and axisymmetric convection 
to the steady asymmetric convection for the fat liquid bridge with large Prandtl  number. 
These results imply that ,  the geometricM parameter  V/Vo is not only a sensitive critical 
parameter  for the onset of oscillatory thermocapillary convection, but  also is an important  
factor for studying the transition mechanism of thermocapillary convection even for the case 
of large Prandtl  number fluid. The numerical results are compared with the ground-based 
experiments [14], and both  results are in a reasonable agreement. 

The results of the present paper only give an example, and show that  there are two 

bifurcation transitions in a liquid bridge of large Prandt l  number. The conclusion of the 
present paper agrees with that  obtained by the linear instability analysis by Chen and Hu [19], 
and that  in the microgravity environment [11]. The two bifurcation transitions exist not only 
in the liquid bridge of small Prandt l  number, but also in the liquid bridge of larger Prandt l  
number. 

Further studies of both  numerical simulations and experiments should be carried out 
on the effect of liquid bridge volume on the transition process, which is related to the new 
mechanism for the onset of oscillatory convection in the floating half zone. 
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