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Abstract: In this paper, particle dynamics in relation to particle size is exploited in two plane wake-type flows. 
For the motion of particles in the Karman vortex street flow, along with an increase of the particle size, 
trajectories have a route of period-doubling bifurcation to a chaotic orbit. For the particle motion in a plane wake 
flow, spectral element method is employed to provide an instantaneous flow field, so that a detail classification 
of particle patterns in relation to Stokes and Froude numbers is determined.  It is found that particle motion 
feature only depends on Stokes number at a high Froude number and depends on both numbers at a low Froude 
number. A parameter describing Stokes number divided by Froude number is introduced to make a threshold of 
the different effects on the particle motion. 
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1   Introduction 
The motion of particles in a nonuniform flow has 
wide technological applications, such as to increase 
combustion efficiency and forecast environmental 
pollution [1,2]. To understand flow mechanism, 
some theoretical models and computational methods 
are developed in the particulate two-phase flow 
research. Due to particle motion in the low Reynolds 
number category, the equation of motion for a small 
rigid sphere in a nonuniform flow field is proposed 
[3,4]. Related studies show that even when the 
background flow fields are very simple, the motion 
can have abundant phenomena: suspended particles 
accumulate along simple isolated curves for a cellular 
flow field [5] and periodic, quasiperiodic or chaotic 
trajectories for a periodic Stuart vortex flow [6].  

In both a plane mixing layer and wake flow, 
influences of large-scale vortices on the particle 
dispersion process are observed experimentally and 
simulated by discrete vortex method [7]. In a plane 
mixing layer, the particles are found to concentrate 
near the outer edges of the vortex structures. It can be 
described by the particle sheet stretching and folding 
mechanisms in vortex pairing interactions [8]. For 
the particle dispersion in a plane wake flow at a high 
Reynolds number (104), highly organized patterns of 
particle concentrations are produced in a correlation 
with the Stokes number. The particles at intermediate 
Stokes number are focused into sheet-like regions 
near the boundaries of the large scale vortex 
structures [9,10]. 

To analyze numerically interaction of particles 
with vortices in plane wake-type flows, in this paper, 
both a Karman vortex street flow and a plane wake 

flow behind a circular cylinder at a moderate 
Reynolds number (102) are taken as background 
flows. For the Karman vortex street flow, effects of 
particle size on trajectories are considered. For the 
plane wake flow, an instantaneously flow field is 
obtained in solving Navier-Stokes equations by 
high-order splitting schemes [11] and spectral 
element method [12,13], so that a detail classification 
of the patterns of particles interacting with vortices in 
relation to Stokes and Froude numbers is determined. 

 
 

2   Governing Equations 
The motion of a small spherical particle in a 
nonuniform flow field u is governed by the 
momentum equation [3,4,6] 
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where V is the velocity of the particle, dp is the 
particle diameter, ρ is the density, g is the 
gravitational acceleration, νf is the fluid kinematic 
viscosity, ω is the vorticity of the flow fluid, and the 
subscripts f and p refer to the fluid and particle, 
respectively. The derivatives D/Dt and d/dt are used 
to denote a time derivative following a fluid element 
and the moving sphere, respectively. The parameter 
fd relating to Reynolds number of particle 
(Rep=|u-V|dp/νf) is described [14] as 
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Introducing the dimensionless quantities δ=ρp/ρf, 
ε=1/(0.5+δ), x*= x/L, t*=t/(L/U∞), u*= u/U∞, V*= 
V/U∞ and g*=g/g, we nondimensionlize Eq. (1) and 
describe as follows 
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where the Froude number Fr= U∞
2/(gL) (U∞ and L are 

the free-stream velocity and the characteristic length, 
respectively), the Stokes number St=U∞T/L (T is the 
particle viscous relaxation time dp

2/18ενf), and  the 
asterisks “*” for the dimensionless quantities are 
omitted for convenience. Moreover, Reynolds 
number of the particle is written as Rep=Řep|u-V| 
(Řep=U∞dp/νf). 

The incompressible plane wake-type flow field u 
is governed by the Navier-Stokes equations in the 
form 
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where p is the fluid pressure divided by fluid density 
and Re=U∞L/νf is Reynolds number of the flow. 

The particle parameters in Eq.(3) can be taken as 
dp=O(10-6)m - O(10-4)m and ρp=2.4 x 103kg/m3 from 
[9]. Since air is chosen as the fluid media in the flow, 
the properties of fluid in Eq.(3) are described as 
ρf=1.225kg/m3 and νf=1.45 x 10-5m2/s [15]. The 
free-stream velocity is taken as U∞= O(1) m/s. In 
order to understand the particle dynamics, we 
analyze orders of magnitude of parameters in Eq.(3). 
For giving physical values in the calculation, the 
parameters fd and Fr appear to be on the order 1 and 
10-2. Since the δ is fixed as the order 103, the 
parameter ε appears to be on the order 10-3. When dp 
is taken as the order 10-6m - 10-4m, the parameters T 
and St appear to be on the order 10-5s - 10-1s and 10-2 - 
102, respectively. In this case, the stress tensor term 
of fluid  3ε/2 Du/Dt, the Basset history term 
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ε/2 (u-V) x ω have smaller orders than the drag term 
fd/St(u-V) and gravity term (1-1.5ε)/Frg in the Eq.(3). 
Thus, the Eq.(3) is dominated by the drag term  and 
gravity term. The particle motion is described by a 
four-dimensional dynamical system of the form 
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3   Results and Discussion 
 
3.1 A Karman vortex street flow 
The velocity filed of Karman vortex street flow is 
governed by 
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where the streamwise spacing of vortices l is taken as 
the characteristic length and a parameter κ is 
introduced to remove singularities. 

Using a fourth-order Runge-Kutta algorithm, we 
integrate Eqs. (5)-(8) with a time size ∆t=0.01LT/U∞. 
The parameters of flow field in Eq. (9) are taken as 
Γ=1, h=0.3 and κ=0.99. In order to draw a bifurcation 
diagram and particle trajectories, 20 x 100 points in 
the street with their corresponding flow filed 
velocities are taken as initial conditions of Eqs. 
(5)-(8), respectively. We investigate the motion of 
particles under the variation of dp for l=0.1m. In the 
total 21000 time steps, points in the first 20000 time 
steps are discarded as transients, as well as points in 
the following 1000 time steps are plotted as particle 
trajectories. In the particle trajectories, points y at x=0 
versus dp are plotted as a bifurcation diagram. For a 
dense bifurcation zone, the diagram is calculated 

 
Fig. 1 A bifurcation diagram for a continuous range 
of dp showing the vertical position of particles at x=0. 
The dense bifurcation zone is enlarged and redrawn 
in the bottom-right corner of the figure. 
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again by using a smaller time size ∆t=0.001LT/U∞ 
and enlarged.  

In order to display the influence of particle size on 
the particle motion, we plot a bifurcation diagram y ~ 
dp in Fig.1. When dp<2.62 x 10-5m, the velocity of 
particle motion is very slow, so that most of the 
particle trajectories are kept near the vortex street, as 
well as divided into two sets: one above the vortex 
street, the other under the vortex street. When 
dp≥2.62 x 10-5m, particle trajectories under the vortex 
street leave farther from the vortex street, but the 
particle trajectories above the vortex street converge 
on a period-1 orbit. For dp=2.62 x 10-5m - 7.85 x 
10-5m, period-1 orbits above the vortex street are 
presented as particle trajectories. Specially, for 
dp=6.87 x 10-5m - 7.48 x 10-5m, another period-1 orbit 
appears in the vortex street. In this case, there exist 
two attractors for the particle trajectories. As dp=7.85 
x 10-5m, the period-1 orbit bifurcates to a period-2 
orbit. For dp=7.85 x 10-5m - 1.03 x 10-4m, particle 
trajectories are presented as period-2 orbits. As 
dp=1.03 x 10-4m, the period-2 orbit bifurcates to a 
period-4 orbit. For dp=1.03 x 10-4m - 1.10 x 10-4m, 
particle trajectories converge on period-4 orbits. 
When dp >1.10 x 10-4m, the period-4 orbit bifurcates 
further to a period-8 orbit and finally to a 
quasi-periodic or chaotic orbit. This bifurcation 
behavior is clearly presented in the enlarged zone in 
Fig.1. At dp =1.276 x 10-4m, a crisis happens, so that 
the quasi-periodic or chaotic orbit disappears, i.e., 
escapes from the central region of flow. Moreover, a 
similar bifurcation process emerges in a range near dp 
=1.1 x 10-4m. 

 
Fig. 2 Typical trajectories on the x-y plane for (a) 
dp=3 x 10-5 m and all streamlines; (b) dp=7 x 10-5m; (c) 
dp=1 x 10-4m; (d) dp=1.05 x 10-4m; (e) dp=1.2 x 10-4m. 

 
Fig. 3 Variation of the maximal Lyapunov exponent 
λmax with dp. 

In the following, we give some trajectories for 
different values of dp. Concerning the stability of 
orbits, we take x=0 as a Poincare section and 
determine their maximal Lyapunov exponents. In 
Fig.2(a), for dp=3 x 10-5m, a period-1 orbit and all 
corresponding streamlines are drawn. The period-1 
orbit, where the particles move from left to right, 
distributes above the vortex street. In Fig.3, for the 
period-1 orbit, the maximal Lyapunov exponent is 
-0.05, so the orbit is stable. In Fig.2(b), for dp=7 x 
10-5m, two period-1 orbits are  placed above and in 
the vortex street, respectively. On the orbit above the 
vortex street, the particles move from left to right. In 
Fig.3, the maximal Lyapunov exponent of the 
period-1 orbit is -0.17, so the orbit is stable. But, on 
the orbit in the vortex street, the particles move in an 
opposite direction, i. e., from right to left. The 
maximal Lyapunov exponent of the period-1 orbit is 
-0.53, so the orbit is also stable. In Fig.2(c), for dp=1 
x 10-4m, a period-2 orbit, which distributes above the 
vortex street, is drawn as particle trajectories. On the 
orbit, the particles move from left to right. In Fig.3, 
the maximal Lyapunov exponent of the period-2 orbit 
is -0.003, so the orbit is stable. In Fig.2(d), for 
dp=1.05 x 10-4m, a period-4 orbit is drawn above the 
vortex street. On the orbit, the particles move from 
left to right. In Fig.3, the maximal Lyapunov 
exponent of the period-4 orbit is -0.02, so the orbit is 
stable. In Fig.2(e), for dp=1.2 x 10-4m, a 
quasi-periodic or chaotic orbit is drawn above the 
vortex street. On the orbit, the particles move from 
left to right. In Fig.3, the maximal Lyapunov 
exponent of the orbit is 0.51, so the orbit is chaotic. 
    From above results, we can conclude that due to 
the interaction of particles with vortices in the 
Karman vortex street flow, along with the increase of 
particle size, the particle trajectories bifurcate from 
periodic orbits to chaotic orbits. 
 
3.2   A plane wake flow behind a circular cylinder  
The plane wake flow field u(xn, tn) is obtained by 
solving Navier-Stokes equations (4). The 
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time-discretization of the Navier-Stokes equations 
employs a high-order splitting algorithm. The 
semi-discrete formulation is written as 
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where the diameter of circular cylinder  is taken as 

the characteristic length. u , u  are intermediate 
velocity fields and the constants αq, βq and γ0 are 
integration coefficients for a mixed explicit/implicit 
stiffly-stable scheme of order J=3. The spatial 
discretization of Eq. (10) is obtained by using the 
spectral element method. The spatial discretization 
proceeds by first covering the computational domain 
with general quadrangles. Each quadrangle is 
mapped from the physical space (x, y) into the local 
co-ordinate system (r, s) by an isoparametric 
tensor-product mapping 
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where hi(r) are Nth order local Lagrange interpolants 
and defined as hi(rj)=δij. δij is the Kronecker-delta 
symbol. In each isoparametric element, the velocity 
and pressure are interpolated in the same fashion.  

In the calculation parameters used are: the 
element number is 116, the order of interpolation 
function is N=8, the streamwise length is 38, and the 
transverse wide is 11. A spectral element mesh is 
drawn in Fig.4. Boundary conditions required for the 
velocity and pressure fields are: at the surface of the 
cylinder the fluid velocity satisfies the non-slip 
condition:  u=(0,0). Far away from the cylinder and 
outside the wake, it matches the free-stream velocity 
u=(1,0) along the left boundary and ∂ux/∂n =0, uy =0 
along the up and down boundaries. Across the 
outflow plane downstream the approximate boundary 
condition for the velocity field is ∂xu(x,t)=(0,0). At 
the same location the pressure is set to a constant 
value of zero. Along all other boundaries the pressure 
satisfies the high-order Neumann boundary condition. 
The time size ∆t is taken as 0.002. 

 
Fig. 4 A spectral element mesh with 8th order local 
Lagrange interpolants. 

From three points near the circular cylinder, 
particle injection rates in the x direction are kept at a 
low value of 0.01m/s, which may reduce the coupling 
effects on the wake flow from the presence of the 
particles. Using a fourth-order Runge-Kutta 
algorithm, we integrate Eqs. (5)-(8) with a time size 
τ=2∆t. At each time step 20τ, a particle is injected 
into the flow field. In order to avoid complex 
treatment for the interaction between particles and 
the circular cylinder, we take a numerical boundary 
r0=0.6 for the particles. When a particle moves into 
the boundary, a repelling potential 1/r will be added 
to the particle. At the same time, in order to reduce 
effects of repelling potential on particle inertia, 
absolute values of velocity are fixed as 0.01 in the 
numerical boundary region. For some parameters of 
particles, ∆t and r0 will decreases and increases, 
respectively, so that particles can be always separated 
from the circular cylinder. 

 
Fig. 5 Particle trajectory patterns in the plane wake 
flow at different particle size (Stokes number) and a 
fixed Fr=70.3. (a) dp=1 x 10-6m (St=5.2 x 10-2); (b) dp 
= 5 x 10-6m (St=0.13); (c) dp = 8 x 10-6m (St=0.33); (d) 
dp = 1.5 x 10-5m (St=1.2); (e) dp = 4 x 10-5m (St=8.3); 
(f) dp = 7 x 10-5m (St=18.6). 

In Eqs. (7)-(8), St affects the particle motions in 
both x and y directions. However, Fr can only make 
changes of particle motion in the y direction. A 
different combination of St and Fr determine the 
particle motion in the plane wake flow. For a given 
Re, the Stokes and Froude numbers can be deduced 
as St=U∞

2dp
2/18ενf

2Re and Fr= U∞
3/gνf Re. Firstly, we 

investigate effects of St on the particle motion at a 
fixed Fr. Since U∞ is taken as 1m/s,  Fr is fixed at 70.3. 
Along with the increase of particle size or Stokes 
number, organized structures of particles in the 
interaction with the Karman vortex street are 
evaluated. Some basic features of particle trajectories 
are drawn in Fig. 5. The particles follow the Karman 
vortex street to downstream and interact with the 
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vortices. In a range of dp=1 x 10-6m to 3 x 10-6m 
(St=5.2 x 10-3 to 4.7 x 10-2), the particles mainly fill 
the cores of vortices as drown in Fig. 5(a). In a range 
of dp=5 x 10-6m to 8 x 10-6m (St=0.13 to 0.33), the 
particles move from the cores of vortices to outside of 
the cores as drawn in Fig. 5(b)-(c). In a range of dp=1 
x 10-5m to 2 x 10-5m (St=0.52 to 2.1), the particles 
concentrate at the edge of vortex street as drawn in 
Fig. 5(d). In a range of dp=3 x 10-5m to 4 x 10-5m 
(St=4.7 to 8.3), the particles, which concentrate at the 
edge of vortex street, have a main distribution in the 
down region as drawn in Fig. 5(e). In a range of dp=5 
x 10-5m to 7 x 10-5m (St=12.9 to 24.3), the particles 
escape from the central region of vortex street as 
drawn in Fig. 5(f). Thus, at a fixed Fr, along with the 
increase of St, the particle motion feature evaluates 
from a centralized distribution to a global distribution 
in the central region of the vortex street. The solid 
particles company the vortices to move downstream 
and have larger transverse velocities than the fluid 
particles in the increase of St. In final, the transverse 
velocities of particles are large enough, so that they 
escape from the central region of the vortex street. 

 
Fig. 6 Particle trajectory patterns in the plane wake 
flow at different Froude and a fixed St=0.13. (a) 
Fr=70.3 (κ=1.8 x 10-3); (b) Fr = 1.1 (κ=0.12); (c) Fr = 
0.56 (κ=0.23); (d) Fr = 0.41 (κ=0.32). 

Secondly, we investigate effects of Fr on the 
particle motion at a fixed St. Since Fr only depends on 
U∞, to preserve a fixed St, dp will be changed in the 
fluctuation of U∞. For the fixed St=0.13, we take 
some different Fr to display phenomena of particle 
motion. When Fr = 4.5 x 103, 5.6 x 102, 70.3, and 8.8, 
the moved particles preserve at the cores of vortices 
as drawn in Fig. 6(a), which is the similar to the 
phenomenon described in Fig. 5(a). However, when 
Fr= 1.1 in Fig. 6(b) and 0.56 in Fig. 6(c), the particle 
motion has different phenomena described in Fig. 
5(a). Many particles move from the up level vortices 
in the vortex street to the down level ones. At the 
same time, the particles move from the cores of 

vortices to outside of the cores and the edge of the 
vortex street. When Fr = 0.24 and 0.14, all particles 
concentrate in the down level vortices in the vortex 
street and the down edge of vortex street as drawn in 
Fig. 6(d). Along with the increase of streamwise 
distance, the particles escape from the central region 
of the vortex street. We also investigate the particle 
motion feature at fixed St=4.7 x 10-2 and 2.1, the 
global phenomena are similar to those described as 
above, but have different thresholds for the effects of 
Fr. 

In order to display the effects of Fr on the particle 
motion, we introduce a parameter κ = Fr

-1 /St
-1=St/Fr. 

When κ≤0.05, the patterns of particle motion only 
depend on St and distribute in the central region of 
vortex street. The Stokes drag term is a major term in 
Eqs. (7)-(8). The gravity term can be neglected. 
When 0.05<κ≤0.25, the moved particles concentrate 
the down region of vortex street and has only a few of 
particles in the up region of vortex street. The gravity 
term is a major term in Eq. (8), but the Stokes term 
cannot be neglected. When 0.25<κ, the particles 
escape from the central region of vortex street along 
with the increase of streamwise distance. The Stokes 
term in Eq. (8) can be neglected. Since the particle 
motion feature evaluates continuously along with a 
continuous change of Fr, the thresholds 0.05 and 0.25 
are only approximate ones. However, they can still 
provide a qualitative criterion for the effects of Fr. 
 
 
4   Conclusion 
In summary, we have shown that in two plane 
wake-type flows, particle size influences on particle 
motion trajectories. Due to the interaction of particles 
with vortices in a Karman vortex street flow, along 
with increase of the particle size, a period-doubling 
bifurcation to a chaotic orbit emerges. For the particle 
motion in a plane wake flow at a moderate Reynolds 
number, an instantaneous flow field is obtained by 
using the spectral element method, so that a detail 
classification of the patterns in relation to Stokes and 
Froude numbers is determined. It is found that 
particle motion feature only depends on Stokes 
number at a high Froude number and depends on both 
numbers at a low Froude number. A parameter κ 
describing Stokes number divided by Froude number 
is proposed to make a threshold of the different 
effects on the particle motion. When κ≤0.05, the 
patterns of particle motion only depend on Stokes 
number and distribute in the central region of the 
vortex street. When 0.05<κ≤ 0.25, the moved 
particles concentrate the down region of vortex street 
and has only a few of particles in the up region of 
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vortex street. When 0.25<κ, the particles escape from 
the central region of vortex street along with the 
increase of streamwise distance. 
 
 
Acknowledgments: This work was supported in part 
by the National Key Program G1999032801 and the 
CAS Program KJCX2-SW-L2 and the K. C. Wong 
Education Foundation of Hong Kong. We also thank 
LSEC and ICTS research computing facilities for 
assisting us in the computation. 
 
 
References: 
[1] J. C. Hunt, Industrial and environmental fluid 

mechanics, Ann. Rev. Fluid Mech. Vol. 23, 1991, 
pp.1-42. 

[2] C. T. Crowe, J. N. Chung and T. R. Troutt, 
Particle dispersion by organized turbulent 
structures, in  Particulate Two-Phase Flow, ed. M. 
C. Roco, Butterworth-Heinemann, London, 1993, 
pp. 626-669. 

[3] M. R. Maxey and J. J. Riley, Equation of motion 
for a small rigid sphere in a nonuniform flow, 
Phys. Fluids  Vol. 26, 1983, pp. 883-889. 

[4] T. R. Auton, J. C. R. Hunt and M. Prud'homm, 
The force exerted on a body in an inviscid 
unsteady non-uniform rotation flow, J. Fluid 
Mech.  Vol.197, 1988, pp. 241-257. 

[5] M. R. Maxey, The motion of small spherical 
particles in a cellular flow field, Phys. Fluids  Vol. 
30, 1987, pp. 1915-1928. 

[6] K.-K. Tio, A. M. Ganan-Calvo and J. C. Lasheras, 
The dynamics of small, heavy, rigid spherical 
particles in a periodic Stuart vortex flow, Phys. 
Fluids A  Vol. 5, 1993, pp. 1679-1693. 

[7] C. T. Crowe, J. N. Chung and T. R. Troutt, 
Particle interaction with vortices, in Fluid 
Vortices, ed. S. I. Green, Kluwer Academic 
Publishers, Dordrecht, 1995, pp. 829-861. 

[8] F. Wen, N. Kamalu, J. N. Chung, C. T. Crowe 
and T. R. Troutt, Particle dispersion by vortex 
structures in plane mixing layers, J. Fluids Eng.  
Vol. 114, 1992, pp. 657-666. 

[9] L. Tang, F. Wen, Y. Yang, C. T. Crowe, J. N. 
Chung and T. R. Troutt, Self-organizing particle 
dispersion mechanism in a plane wake, Phys. 
Fluids A  Vol. 4, 1992, pp. 2244-2251. 

[10] Y. Yang, C. T. Crowe, J. N. Chung and T. R. 
Troutt, Experiments on particle dispersion in a 
plane wake, Inter. J. Multiphase Flow Vol. 26, 
2000, pp. 1583-1607. 

[11] G. E. Karniadakis, M. Israeli and S. A. Orszag, 
High-order splitting methods for the 

incompressible Navier-Stokes equations, J. 
Comput. Phys.  Vol. 97, 1991, pp. 414-443. 

[12] A. T. Patera, A spectral element method for 
fluid dynamics: laminar flow in a channel 
expansion, J. Comput. Phys.  Vol. 54, 1984, pp. 
468-488. 

[13] K. Z. Korczak and A. T. Patera, An 
isoparametric spectral element method for 
solution of the Navier-Stokes equations in 
complex geometry, J. Comput. Phys. Vol. 62, 
1986, pp. 361-382. 

[14] R. Clift, J. R. Grace and M. E. Weber,  Bubbles, 
Drops and Particles, Academic, New York, 
1978. 

[15] R. L. Panton,  Incompressible Flow, John Wiley 
& Sons, New York, 1984. 

Proceedings of the 2006 WSEAS/IASME International Conference on Fluid Mechanics, Miami, Florida, USA, January 18-20, 2006 (pp7-12)


