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A nonlinear threshold model applied to spallation analysis
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Abstract

Spallation in heterogeneous media is a complex, dynamic process. Generally speaking, the spallation process is relevant
to multiple scales and the diversity and coupling of physics at different scales present two fundamental difficulties for spall-
ation modeling and simulation. More importantly, these difficulties can be greatly enhanced by the disordered heteroge-
neity on multi-scales. In this paper, a driven nonlinear threshold model for damage evolution in heterogeneous materials is
presented and a trans-scale formulation of damage evolution is obtained. The damage evolution in spallation is analyzed
with the formulation. Scaling of the formulation reveals that some dimensionless numbers govern the whole process of
deformation and damage evolution. The effects of heterogeneity in terms of Weibull modulus on damage evolution in spall-
ation process are also investigated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The failure of heterogeneous media under loading
is a typical multiscale coupling process in far-from
equilibrium systems. Let us take spallation as an
example. Firstly, the spallation process incorporates
a wide range of spatial and temporal scales. The
dynamics on various scales differs from each other
[1,2]. Secondly, spallation is a process far from equi-
librium. The dynamics at various scales can be
excited simultaneously, and there may be strong or
sensitive coupling among them. In addition, the
dynamics involved in the process are often nonlinear
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in both time and stress [2,3]. Thirdly, at mesoscopic
scales, most engineering materials are disordered
and heterogeneous. During spallation process, the
effects of some disordered structures at mesoscopic
scales can be amplified significantly, and become
important at macroscopic scale, which makes the
development of predictive models for spallation
analysis particularly challenging [4].

There have been various efforts to formulate this
multi-scale process, such as the integral criterion,
continuum measure of spallation, microstatistical
fracture mechanics, etc. [1,2,5,6]. These studies pro-
vide progressively helpful means to reveal the essence
of spalling. In recent 10 years, some new and infor-
mative studies relevant to spallation are made to have
deeper understanding of the process [7–14]. All these
work intended to link the macroscopic spallation
.
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and the microdamage evolution inside materials.
However, there is still an acute lack of quantitative/
predictive models based on the dynamics of spalla-
tion [15].

In principle, the problem of spallation can be rep-
resented by a statistical approach linking micro-
scopic scale and macroscopic scale. However, it is
difficult to represent non-equilibrium statistical evo-
lution in a statistical approach linking microscopic
and macroscopic scales due to the huge span of
the scale. In addition, there are not simple direct
connections between microscopic and macroscopic
features in the process. Furthermore, a noticeable
feature in the problem is the richness of structures
and processes at mesoscopic scale. These mesoscale
structures, such as grains, microcracks, etc. play sig-
nificant role in the problem. Hence, a rational
approach is to develop a statistical approach linking
mesoscopic and macroscopic scales. Such a theory is
called statistical mesoscopic damage mechanics.
Statistical mesoscopic damage mechanics can be
constructed based on various mesoscopic rep-
resentations, e.g., mesoscopic damage representa-
tion, and mesoscopic unit representation. In terms
of the mesoscopic damage representation, one can
properly deal with the two phases of damage accu-
mulation, i.e., globally stable accumulation of
microdamage and damage localization [2]. In this
paper, we present a model based on mesoscopic unit
representation, which is called driven nonlinear
threshold model [16].

2. Driven nonlinear threshold model

We consider a macroscopic representative vol-
ume element (RVE) (at x) comprised of a great
number of interacting, nonlinear, mesoscopic units,
that is, a driven nonlinear threshold model [17]. The
heterogeneity of the mesoscopic units can be charac-
terized by their broken threshold. The mesoscopic
units are assumed to be statistically identical, and
their threshold rc follows a statistical distribution
function u(rc, t,x).

The RVE is subjected to nominal driving force
r0(t,x), which is adopted as macroscopic variable.
In the RVE, a unit will have probability to break
as the real driving force (true stress) r(t,x) on it
becomes higher than its threshold. When a unit
breaks, it will be excluded from the distribution
function. Hence, we introduce a time-dependent dis-
tribution function of intact units u(rc, t,x) with ini-
tial condition
uðrc; t ¼ 0; xÞ ¼ hðrcÞ; ð1Þ
where h(rc) is normalized asZ 1

0

hðrcÞdrc ¼ 1: ð2Þ

In Eq. (2), rc is non-dimensionalized and normalized
by a parameter r*, the characteristic value of rc.

We adopt local mean field approximation
(LMFA), i.e., all intact units in the RVE support
identical driving force (true stress) r(t,x). That is,
the real driving force (true stress) r(t,x) applied
on intact units is determined by

rðt; xÞ ¼ r0ðt; xÞ
1� Dðt; xÞ ; ð3Þ

where D(t,x) is continuum damage of the RVE at
time t and is defined as

Dðt; xÞ ¼ 1�
Z 1

0

uðrc; t; xÞdrc: ð4Þ

The evolution of distribution function u(rc, t,x) is
suggested to follow an equation based on relaxation
time model:

ouðrc; t; xÞ
ot

¼ �uðrc; t; xÞ
s

; ð5Þ

where s is the characteristic relaxation time of dam-
age. Generally speaking, s is a function of the true
driving force r(t,x) and the threshold rc of meso-
scopic units, s = s(rc,r(t,x)).

Integrating Eq. (5) and substituting the definition
of continuum damage (Eq. (4)) to the obtained
equation, we obtain the evolution equation of con-
tinuum damage:

dDðt; xÞ
dt

¼ f ¼ �
Z 1

0

ouðrc; t; xÞ
ot

drc

¼
Z 1

0

uðrc; t; xÞ
sðrc; rðt; xÞÞ

drc; ð6Þ

where f is the dynamic function of damage (DFD),
the agent linking mesoscopic microdamage relaxa-
tion and macroscopic damage evolution.

Similar to [2], in order to establish a closed, com-
plete formulation, Eq. (6) should be associated with
traditional, macroscopic equations of continuum,
momentum, and energy, as well as constitutive rela-
tionship. This is a formulation with intrinsic trans-
scale closure. However, it is worth noticing that in
the constitutive relationship, the effects of micro-
damage should be taken into account as a reduction
in the elastic modulus:

Eðx; tÞ ¼ E0ðxÞð1� Dðx; tÞÞ; ð7Þ
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where E0 is the elastic modulus of intact media, E

the effective elastic modulus of damaged media. In
addition, the stress appeared in traditional macro-
scopic equations is nominal stress denoted by
r0(x, t), while the stress in mesoscopic dynamics
equation (Eq. (4)) is the true driving stress r(x, t).

With the abovementioned formulation, we numer-
ically investigated the process of spallation and ana-
lyzed the effects of microdamage relaxation time and
Weibull modulus on the propagation of damage.
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3. Numerical analysis of spallation

Consider a problem of damage evolution owing
to the normal impact of a flying plate of thickness
L with velocity vf striking on a target plate, i.e.,
spallation. For simplicity, we assume that the
impactor-plate system deforms in uniaxial strain.
For the time-dependent damage process, an associ-
ated equations of continuum, momentum and dam-
age evolution should be formed. In one-dimensional
strain state, these are

oe
oT
¼ ov

oX
ð8Þ

q0

ov
oT
¼ or

oX
ð9Þ

oDðT ;X Þ
oT

� v
1þ e

oDðT ;X Þ
oX

¼ f

¼
Z 1

0

uðrc; t;xÞ
sðrc; rðt; xÞ

Þdrc; ð10Þ

where q0 is density of intact material and v the
velocity of RVE. It is noticeable that the damage
evolution equation Eq. (6) is written in Eulerian
coordinate system (t, x), while Eq. (10) in Lagrang-
ian coordinate system (T, X). The transformation
between the two systems is o

ot þ v ov
oX ¼ o

oT and o
ox ¼

1
1þe

o
oX .
For simplicity, the Al alloy is assumed to be an

elastic material in the simulation. The constitutive
equation is:

dr ¼ E0ð1� DÞde� E0edD; ð11Þ
where E0 is the elastic modulus of the sample in uni-
axial strain state and the acoustic speed in intact
material is a,q0a2 = E0.

Similar to Weibull’s statistical strength theory
[18], we suppose that the initial distribution of
threshold h(rc) follows Weibull distribution:
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0.0

cσ

Fig. 1. Distributions expressed as Eq. (13).

hðrcÞ ¼ m

ðrc � r�Þm�1

ðr�Þm exp � rc � r�

r�

� �m� �
; ð12Þ
where m is the Weibull modulus and r* the charac-
teristic value of rc. Fig. 1 shows typical distributions
expressed by Eq. (12). The smaller Weibull modulus
(m), the broader the distribution becomes, and the
material is more heterogeneous. On the other hand,
larger m value represents a homogeneous material
in which the stress threshold is almost constant.

There are various ways to determine the relaxa-
tion time of damage s. For example, we may assume
that

s ¼

1; as rðt; xÞ < rc;

sD
rðt;xÞ

rc

� ��q
; as rM P rðt;xÞP rc;

0; as rðt; xÞ > rM:

8>><
>>:

ð13Þ

Model defined as Eq. (13) implies that the damage
relaxation can be characterized by three time scales:

(1) for low driving force, r < rc, the damage
appears as a very slow relaxation process,
and we simply assume s!1;

(2) for intermediate driving force, rc 6 r < rM,
the damage relaxation can be described by a
finite relaxation time, which depends on
r(t,x)/rc and q is a positive parameter. sD is
the characteristic relaxation time;

(3) for very high driving force, r P rM, the dam-
age evolution becomes a very fast relaxation
process, and the relaxation time is nearly zero,
which is corresponding to the catastrophic
rupture. In addition, it also means a cutoff of
distribution function h(rc) at rc = rM.

We can further simplify the model by assuming
the exponent in the second equality of Eq. (13) to
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Fig. 2. Effects of De* on damage evolution. (M = 3.30, S =
0.303, m = 5.0).
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Fig. 3. Effects of m on damage evolution. (a) M = 3.30, S =
0.303, De* = 0.583 and (b) M = 4.45, S = 0.303, De* = 1.166.
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be zero, that is, if the true driving force satisfy
rM P r(t,x) P rc, the relaxation time of microdam-
age is constant as sD.

Due to the trans-scale nature of spallation, it is
helpful to non-dimensionalize the variables in Eqs.
(8)–(11). Then the dimensionless equations are:

o�e

oT
¼ M

o�v

oX
ð14Þ

o�v

oT
¼ S

o�r

oX
ð15Þ

oD

oT
þM�v

oD

oX
¼ �f ¼

Z 1

0

ua
sL

drc ð16Þ

d�r ¼ ð1� DÞd�e� �edD: ð17Þ

In Eqs. (14)–(17), the non-dimensionalized variables
are: T ¼ Ta=L, X ¼ X=L, �v ¼ v=vf , �e ¼ e=e�, �r¼r=r�

and r* = E0e*; and the dimensionless numbers are:

Mach number: M ¼ vf

ae�
; ð18Þ

Damage number: S ¼ r�

q0avf

: ð19Þ

The ratio of characteristic microdamage relaxation
time sD over the lasting time of imposed stress pulse
forms another dimensionless number, Deborah
number De*:

De� ¼ sD

L=a
: ð20Þ

The effects of De* and m on the damage evolution in
the target plate are studied.

4. Results and discussion

All other parameters (M, S, m) fixed, we change
the Deborah number De* in the simulation. The
effect of Deborah number De* on the evolution of
damage in the target plate is shown in Fig. 2. In
these calculations, Mach number M, Damage num-
ber S and Weibull modulus m remain unchanged for
all curves in Fig. 2. Obviously, the maximum dam-
age in the target plate increases with decreasing
De*. Therefore, the decrease of De* speeds up the
process of microdamage evolution.

Physically speaking, there are two kinetic pro-
cesses involved in spallation. They are: the macro-
scopic impact loading, and microdamage relaxation
process. As shown in Eq. (20), De* is the characteristic
time ratio of the two processes. Therefore, De* repre-
sents the competition and coupling between the
microdamage relaxation process and the macro-
scopic impulse loading process. For a given impact
loading time, smaller De* means shorter microdam-
age relaxation time, that is, the microdamage evolves
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Fig. 4. Variation of rp with m.
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faster. Therefore, smaller De* results in more damage
in the target plate.

Fixing all other parameters, we studied the
effects of the Deborah number De* on the damage
evolution by changing the Weibull modulus as
m = 1,2,4,6,8,10. However, the effects of Weibull
modulus m is not so straightforward as that of
De*. Fig. 3(a) and (b) show the effects of m on the
maximum damage in target plate at two different
stresses. In Fig. 3(a), the increase of m leads to smal-
ler damage. While in Fig. 3(b), the maximum dam-
age increase with an increase in m.

Then, what caused the opposite effects of m on
damage evolution?

Fig. 4 illustrates the variation of the threshold
with peak density rp with the Weibull modulus m.
Obviously, when m varies from 1 to 10, rp only var-
ies slightly. The stress in Fig. 3(a) is below the mean.
In these cases, a smaller m implies a broader thresh-
old distribution, and physically represents a more
heterogeneous material. Therefore, there are more
mesoscopic units failing at low stress levels, and ulti-
mately induces a higher macroscopic damage, as
shown in Fig. 3(a). However, for stress above rp

(Fig. 3(b)), in cases with a smaller m, there are more
mesoscopic units survive at high stress levels, and
therefore, induces smaller damage in the target
plate, as shown in Fig. 2.

5. Summary

A driven nonlinear threshold model for damage
evolution was presented and a trans-scale formula-
tion of damage evolution is obtained. With the pre-
sented model, the spallation in an Al plate is studied
numerically. The study shows that Mach number
M, damage number S, Deborah numbers De* and
Weibull modulus m govern the damage evolution
process in the target plate. The decrease of De*

accelerates damage evolution in the target plate.
At low stress levels, smaller m induces higher dam-
age, while at high stress levels, higher m results in
more damage in the target plate.
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