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Abstract: An attempt is made to elaborate the definition of the coefficient of strain-rate sensitivity, which is a

fundamental concept for macroscopic dynamic plasticity and dislocation dynamics. Since a solid subjected to

large dynamic loading usually undergoes dynamic response with finite deformation, therefore, the definition of

this coefficient is also put forward to the case of large dynamic plastic deformation. The analogy between inter-

nal friction increment and overstress due to strain-rate sensitivity is clarified.
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Experimental evidence shows that plastic de-
formation of metals and their alloys is fundamentally
rate (time) dependent. The major difference between
dynamic plastic and quasi-static plastic behavior of
materials is that both inertia and strain-rate effects
are no longer neglected for large intense loading!™.
The strain-rate effect is of importance for the dy-
namic plastic analysis of strain-rate sensitive (or
rate-dependent) materials such as mild steel, tita-
nium alloy, OFHC copper and so forth. When these
materials are subjected to external intensive loadings,
their dynamic yield stresses are much larger than
their static ones’”™); the difference between the dy-
namic stress and the corresponding stress point on
the quasi-static surface is called overstress. Most of
the theories that describe the transient and steady-
state behavior of metallic alloys make the inelastic
strain rate a function of the over (effective) stresst”..

As a matter of fact, the rate-dependent phe-
nomenon is historically related to material internal
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friction. The rate dependence of tin was investigated
by Ludwik™ and he found that the maximum tensile
strength was dependent on the strain rate. From
these experimental observations he deduced that the
current internal friction R must be composed of a
base internal friction R, plus a contribution which
depends on the tensile velocity v such that™>®

R=R +k'" ¢
where k£ and n are material constants. Actually,
Eq.(1) is also the relationship between internal fric-
tion and strain rate since !

E=v/l, )
where [, is the initial length of the specimen. Then,
the overstress corresponds to the difference of mate-
rial internal frictions. As discussed in Ref.[1] and
illustrated in Eq.(2), the strain-rate dependence has
an intrinsic length scale effect.

Dynamic fracture of most materials is also rate
dependent!”. Tt is generally agreed by experiments
that the dynamic fracture toughness of materials
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under small-scale yielding (SSY) decreases with the
increasing strain rate; the fracture in this case is one
of cleavage in nature. On the other hand, the dy-
namic fracture toughness of materials under large-
scale yielding (LSY) increases with the increasing
strain rate, resulting in a fibrous fracture. There is a
linear relationship between strain rate € and stress
intensity factor rate K, for linear elastic material
fracture, i.e.,

e=k2r g

EK,

where E and o, are Young’s modulus and quasi-

G)

static yield stress, respectively; K, is the mode [/
stress intensity factor; k£ is a material constant re-
flecting intensification for strain singularity”. For
nonlinear elastic material fracture, Eq.(3) is replaced
by

€= ci )]

J

where ¢ is a parameter having different values in
plastic zone or in process zone; J and J are J -
integral and integral rate.

1 Definition of Coefficient
of Strain-rate Sensitivity

As a characterization of the parameter for mate-
rial strain-rate sensitivity in plastic dynamics, the

coefficient (or exponent) of strain-rate sensitivity is
(8,91

_ do
= Sme) G

where ¢ is the dynamic Cauchy stress (or true

commonly defined as

stress), and £” is the dynamic plastic strain rate. For
dynamic shear deformation with shear strain rate ¥
and shear stress 7, one has under constant tempera-

ture
oT 1 oUY
A=l— | = —== 5b
(amyl kT ar) (5b)

where U is the activation energy; K is the Boltz-
mann’s constant. At a constant strain rate,
A=(07/9(n )'/))7 increases for the increasing stress

(91

or strain levels”™ over the strain rate region higher

than 10 s . It should be noted that Eq.(5a) and

Eq.(5b) are for uniaxial deformation. For multi-axial
plastic deformation, on the other hand, one should
use the equivalent stress and equivalent plastic strain
rate in Eqgs.(5a) and (5b), i.e.,

O-"q“:W’é:qu:

In dislocation dynamics, the corresponding co-

26767 /3 (5¢)

efficient of strain-rate sensitivity is usually defined

ast%
oT
= 6
A= 3n) (62)
ort!l
ot
/1=—°’f_ (6b)
(n7)

where v and 7 are dislocation velocity and shear
strain rate, respectively. The effective shear stress
driving the dislocation is the difference between
external applied shear stress 7, and the back stress
T » 1-€5

T, =T —T,, (7
The dislocation velocity and the strain rate can be
linked by the famous Orowan equation

7= pb ®)

where p_ and b are mobile dislocation density and
Burgers vector of dislocation, respectively. It is seen
that Egs.(6a) and (6b) are physically equivalent. If
forest dislocations are the prevailing sources of long-

range interactions, the back stress 7,

. 1s given by

the famous Taylor formula
T, =oub.[p, ©)
where p, is the forest dislocation density, i is the
elastic shear modulus, and ¢ is a numerical coeffi-
cient. If, as another example, the back stress is
mainly due to dislocation dipoles with a density p,
and a mean dipole width y,, one has
Tose =0 1By, P, (10)
It is especially noted that the definitions in
Egs.(5a), (6a) and (6b) are dimensionally invalid,
since [°]=[y]1=T", and [v]=LT". Here [--]
means the dimension of a physical quantity. What is
more, the coefficient of strain-rate sensitivity defined
by Egs.(5a)~(6b) has the dimension of stress,
namely MPa (for comparatively small strain-rate
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sensitivity f.c.c. metals, A =0.03 ~0.3 MPa"'"!; for
strongly rate sensitive b.c.c. metals, A =1~ 10 MPa),
which is hard to understand from its original defini-
tion. As a result, it is worthy to discuss the classical
definition of the coefficient of strain-rate sensitivity
in detail.

2 Reconsideration of Coefficient
of Strain-rate Sensitivity
Eq.(5a) is equivalent to
A=lim— 20 an
-4 Ing; —Iné’
which is actually
AP Y AP
A= 1imw (12)
4 In(g; /ér)
It is noted that Eq.(12) is dimensional valid.
The dimension of the coefficient defined by Eq.(14)
is that of stress. Eq.(12) can be practically adapted as
o(er)-alér)
A== ey (13)
In(g? /€7)
Here O'(é;’ )—O'(éf ) is the overstress. Both Eqs.(6a)
and (6b) can be rewritten in the same manner.
It is noted that strain-rate sensitivity is also im-
portant for creep and superplasticity of metals., The
corresponding coefficient of strain-rate sensitivity in

creep is usually defined as!'>"!

d(lno)
= 14
3(ine) (14
which can be understood as
_ In(o,/0,) (15)
In(é, /¢,)

Superplasticity happens when™ 0.3<m<1. m is
obviously a dimensionless number.

3 Finite Deformation

When subjected to large dynamic loading, a
solid usually undergoes dynamic response with finite
deformation. Therefore, it is worthy to extend the
definition of the coefficient of strain-rate sensitivity
to the case of finite deformation.

3.1 The second P-K stress tensor
and Green strain tensor

For finite deformation, Eq.(12) can be rewritten

as
2 =TE)-TE)

In(E?/EY)
where T is the second Piola-Kirchoff stress, and £
is the Green strain. 7 and E are work conjugate

(16)

pair. T is related to Cauchy (true) stress through %!
IT=JF'¢-F" 17
where F is the deformation gradient tensor,
J= det(E.}. ) The plastic Green strain rate tensor is
B =%(F"T P+ FTF?) (18)
The plastic deformation gradient tensor F* and the
elastic deformation gradient tensor F° is related to
the deformation gradient F by the famous E.H.
Lee’s multiplicative decomposition theorem (1969)
F=F°F° 19)
And (.) means the material time derivative. Lee’s
decomposition is not unique; Clifton"*! discussed
the equivalence of Eq.(19) and the inverse decompo-
sition F=F"®-F°, which is found to be slightly
more convenient than Eq.(19) for analysis of one-
dimensional wave propagation in elastic/viscoplastic
solids.

3.2 Kirchoff stress tensor and plastic
deformation rate tensor

Since the first Piola-Kirchoff stress tensor
and deformation rate tensor d are work conjugate
pair, then the coefficient of strain-rate sensitivity can
be defined as

e r(d:) - rgd;)
In(d}/d})
The first P-K stress tensor is related to Cauchy stress

(20)

tensor through
T=Jo 2n
and the plastic deformation rate tensor is

d° =%(F° L' F+F-T" -F* ) 22)

where

-1
L'=F*.F° (23)
is the plastic velocity gradient in the unloading con-
figuration.
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4 Discussion and Summary

The advantage of Eq. (13) over Eq. (5a) is two-
fold: (1) It is dimensional valid, and (2) it is conven-
ient for experimental application. The dimension of
the coefficient of strain-rate sensitivity is that of
stress, and this feature can be reflected by another
expression

dc .00

A= m = Y 249
Johnson and Cook presented a dynamic constit

utive equation in 1983 as follows"®!
0=(A+Be")(1+Clné)Y(1-T™) (25)
where 4,B,C ,n, and m are yield strength, work
hardening coefficient, work hardening exponent,
strain rate sensitivity and thermal coefficient; £ is
the equivalent plastic strain; £’ =£/§€, is the di-
mensionless plastic strain rate taking €, =1s™; and
T"=(T-T)/T,-T) is the homologous tempera-
ture, with 7 being the immediate absolute tempera-
ture of the deformed specimen, 7, and 7, being the
room temperature and the melting point, respectively.
If the dimensionless temperature 7" and the
equivalent plastic strain £ are kept invariable, the

coefficient of strain-rate sensitivity is

do .
=— | =Cl4+Be"\1-T™ 26
a(ng)'™ Cla+Be =17}, @9

The dynamic behavior of most metallic materi-

als can be modeled by the Cowper-Symonds consti-
tutive equation as follows

o,/0,=1+(¢ /D) (27
where o, and 0, denote, respectively, the dynamic
and static yield stress at a uniaxial plastic strain rate
€, D and q are constants for a particular material.
The coefficient of strain-rate sensitivity for Cowper-
Symonds dynamic constitutive equation is found to

be
o (&Y’
1=%(£ 28

Q(D) -

It is noted from a comparison between Eqs.(26) and
(28) that the coefficient of strain-rate sensitivity for
Johnson-Cook constitutive equation does not depend
on the strain rate for given strain and temperature as
Cowper-Symonds equation. Some constants in

Eq.(27) or Eq.(28) for several typical materials are
listed in Table 1.

Table 1 Coefficients in Cowper-Symonds constitutive

equation for some typical materials

Material D/s™ q
Mild steel 404 5
Aluminum alloy 6500 4
¢ -Titanium(Ti 50A) 120 9
Stainless steel 100 10

It is interesting to note that there is an analogy
between internal friction and overstress. This can be
clearly seen by comparing Eqs.(1) and (27), i.e.,

R-R, =k(l€)" (29a)
8. 1/q

c—-0,=0,| — 29b

o[t o

which holds for uniaxial tension. Eq.(2) has been
used for derivation of Eq.(29a). From Eqs.(29a) and
(29b) one has

R-R ~(0-0,)" (30)
Eq.(29a) means that there exists a direct relationship
between strain rate and internal friction, and internal
friction increment due to strain-rate sensitivity is
analogous to overstress.

There exist other kinds of definitions for strain-
rate sensitivity. For instance, Hsu and Clifton!"”
defined a characteristic time parameter for consid-
eration of influence of rate-dependent plastic flow

on plastic wave propagation
/0€*
- d0 /o€ 31)
do /oe
The above parameter is a measure of the relative

importance of strain-rate sensitivity and strain-
hardening in determining changes in flow stress due
to changes in strain-rate and strain. Large values of
t, suggest that rate dependence of the flow stress
will influence wave profiles for longer time after
impact, so that for large ¢ it is more likely that a
rate-dependent theory will be required to explain
observed profiles.

To summarize, this paper attempts to elaborate
the definition of the coefficient (exponent) of strain-
rate sensitivity, since the classic one is dimensional
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invalid. This definition is also extended to the case
of finite deformation. This paper also clarifies the
analogy between internal friction increment and
overstress due to strain-rate sensitivity.
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