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Abstract

The permeability of the fractal porous media is simulated by Monte Carlo technique in this work. Based on the frac-

tal character of pore size distribution in porous media, the probability models for pore diameter and for permeability

are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by

the present Monte Carlo method. The results show that the present simulations present a good agreement compared

with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method

may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity

and electrical conductivity) in fractal porous media, both saturated and unsaturated.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The permeabilities for porous media, both saturated

and unsaturated, have received extensive attention [1–

6] in the past decades. Since the microstructures of real

porous media are usually disordered and extremely com-

plicated, this makes it very difficult to analytically find

the permeability of the media. Conventionally, the per-

meabilities of porous media were found by experiments

[1,2]. In addition, much effort was devoted to numerical

simulations such as the lattice gas (LG) [4] and Lattice

Boltzmann method (LBM) [5,6]. However, the results
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from either experiments or numerical simulations are

usually expressed as correlations with one or more

empirical constants or as curves, and the mechanisms

behind the phenomena are thus often ignored. There-

fore, seeking an analytical solution of permeability for

porous media becomes a challenging task.

Fortunately, the porous media have been proved to

be fractal objects in nature [7–14]. Katz and Thompson

[7] may be the first to present the experimental evidence

indicating that the pore spaces of a set of sandstone sam-

ples are fractals and are self-similar over 3–4 orders of

magnitude in length extending from 10 Å to 100 lm.

They argued that the pore volume is a fractal with the

same fractal dimension as the pore-rock interface.

Krohn and Thompson [8] showed a set of sandstone

pores and found that they are fractals and follow the
ed.
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Nomenclature

A area of a unit cell

Df pore area fractal dimension

DT fractal dimension of tortuous streamlines

J total number of Monte Carlo simulations

for one run for a porosity

K permeability

L length scale

L0 representative/straight length

N cumulative number of pores or total simula-

tion number for a converged permeability

q flow rate

Q total flow rate

R cumulative probability, defined by Eq. (7),

or random number defined by Eq. (10)

Rc mean radius of clusters

h i means

Greek symbols

r variance

/ porosity

k pore size/diameter

l viscosity

Subscripts

c cluster

max maximum

min minimum

t total

p pore

i the ith capillary chosen randomly by Eq.

(10), or the ith simulation
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fractal power laws. Smidt and Monro [10] performed

experimental investigations on the images of laboratory-

made synthetic sandstone and on modeled sandstone.

Their results showed that the pore space of both the

synthetic and the modeled sandstone was found to be

fractal and the fractal scaling laws were obtained by

the Box-counting method. This suggests that the labora-

tory synthetic stone pores are also fractal objects. For

more evidences that the porous media are fractal objects,

readers may consult the references [7–14].

Sahimi [3] reviewed and discussed theoretical and

experimental approaches to flow, hydrodynamic disper-

sion, and miscible and immiscible displacement pro-

cesses and their effective properties in reservoir rocks

from continuum models to fractals, percolation, cellular

automata. In his review, several empirical correlations

for permeability are presented. However, these correla-

tions are expressed as a function of only porosity with

several empirical constants which have no physical

meaning.Adler [15] concluded that the permeability in

real porous media can be expressed as K = K(e,Df, . . . )
(where e and Df are porosity and fractal dimension,

respectively). However, no quantitative expression was

given. Recently, Yu and Cheng [13] developed a fractal

permeability model for bi-dispersed (saturated) porous

media based on the fractal characteristics of pore sizes

of the media, and this fractal model is also applicable

to anisotropic porous fabrics [14,16].

In this paper, the Monte Carlo simulations are per-

formed based on the fractal natures of pore size distribu-

tion in porous media. The predictions from the present

Monte Carlo simulations are compared with those from

the existing analytical solution for bi-dispersed porous

media, real porous media.
2. Formulation of the Monte Carlo technique

The pore microstructures, both the pore sizes and the

pore-interfaces, of such porous media exhibit the fractal

characteristics, and these media are called fractal porous

media. The present work only deals with these media.

The cumulative size-distribution of pores or islands

(on earth) or spots (on engineering surfaces) whose sizes

are greater than or equal to the size k have been proven

to follow the fractal scaling law [12–14]:

NðL P kÞ ¼ kmax

k

� �Df

ð1Þ

where Df is the pore area fractal dimension, 1 < Df < 2 in

two dimensions and kmax is the maximum pore size. Eq.

(1) implies that there is only one maximum pore in a

porous medium or one maximum island on earth, and

this is consistent with the practical situation.

Differentiating equation (1) with respect to k results

in the number of pores whose sizes are within the infin-

itesimal range k to k + dk,

�dN ¼ Dfk
Df

maxk
�ðDfþ1Þ dk ð2Þ

where dk > 0. The negative sign in Eq. (2) implies that

the island or pore number decreases with the increase

of island or pore size, and �dN > 0. Eq. (1) describes

the scaling relationship of the cumulative pore popula-

tion. The total number of pores or islands or spots, from

the smallest diameter kmin to the largest diameter kmax,

can be obtained from Eq. (1) as [12,13]

NtðL P kminÞ ¼
kmax

kmin

� �Df

ð3Þ
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Dividing Eq. (2) by Eq. (3) gives

� dN
Nt

¼ Dfk
Df

mink
�ðDfþ1Þ dk ¼ f ðkÞdk ð4Þ

where f ðkÞ ¼ Dfk
Df

mink
�ðDfþ1Þ is the probability density

function and f(k) P 0. Patterned after the probability

theory, the probability density function f(k) should sat-

isfy the following normalization relationship or total

cumulative probability:Z 1

�1
f ðkÞdk ¼

Z kmax

kmin

f ðkÞdk ¼ 1� kmin

kmax

� �Df

� 1 ð5Þ

The integration result of Eq. (5) shows that Eq. (5)

holds if and only if

kmin

kmax

� �Df

ffi 0 ð6Þ

is satisfied. Eq. (6) implies that kmin � kmax must be satis-

fied for fractal analysis of a porousmedium, otherwise the

porous medium is a non-fractal medium, and Eq. (6) can

be considered as a criterion [12] whether a porousmedium

can be characterized by fractal theory and technique. In

general, kmin/kmax < 10�2 in porous media and Eq. (6)

holds approximately, thus the fractal theory and tech-

nique can be used to analyze properties of porous media.

The cumulative probability (R) in the range of

kmin � k can be found by

RðkÞ ¼
Z k

kmin

f ðkÞdk ¼
Z k

kmin

Dfk
Df

mink
�ðDfþ1Þ dk

¼ 1� kmin

k

� �Df

ð7Þ

Eq. (7) indicates that R = 0 as k! kmin and R � 1 as

k ! kmax. The latter case is expected because of Eq.

(6). Since the pore size k in a porous medium is ran-

domly distributed in the range of kmin � kmax, R in Eq.

(7) is in the range of 0–1 and thus approximately corre-

sponds to a set of random numbers of 0–1.

From Eq. (7), we can obtain

1� R ¼ kmin

k

� �Df

ð8Þ

From Eq. (8), a pore size k is expressed as

k ¼ kmin

ð1� RÞ1=Df
¼ kmin

kmax

� �
kmax

ð1� RÞ1=Df
ð9Þ

where kmin 6 k 6 kmax. Eq. (9) is a probability model for

pore size in the present simulation. For the ith capillary

tube chosen randomly, Eq. (9) can be written as

ki ¼
kmin

ð1� RiÞ1=Df
¼ kmin

kmax

� �
kmax

ð1� RiÞ1=Df
ð10Þ

where i = 1,2,3, . . . ,J, and J is the total number ofMonte

Carlo simulations in one run for a given porosity. Eq. (9)
or (10) presents an explicit model for pore size distribu-

tion in porous media, whereas an analytical solution such

as Ref. [13] cannot provide such an explicit model for

pore size distribution. Eq. (9) or (10) may be helpful

for one to understand the meaning of Monte Carlo sim-

ulations. Eq. (10) denotes that since Ri is a random num-

ber of 0–1 produced by computer, thus, the pore size ki is
determined randomly, and this also simulates the ran-

domness and fractal distribution of pore sizes in porous

media because Eq. (10) is based on Eq. (1). This mecha-

nism can be easily understood if one carefully examines,

for instance, a sample of soil, one can easily find that the

pores with different sizes are randomly distributed in the

sample, not regularly distributed in the sample. This

means that the pore sizes are not only randomly distrib-

uted but also follow the fractal power law Eq. (1). There-

fore, we can choose random number of R and determine

the pore sizes by Eq. (10) if kmin or kmin/kmax and kmax is

known for a porous medium.

In Eq. (10) the pore area fractal dimension Df for sat-

urated porous media is given by [12]

Df ¼ d � ln/

ln kmin

kmax

ð11Þ

where / is the effective porosity of porous media, d is the

Euclidean dimension, and d = 2 and 3 in the two- and

three-dimensional spaces, respectively. Eq. (11) exactly

holds for exactly self-similar fractal geometries and

approximately holds for random or disordered fractal

porous media. Eq. (11) implies that the statistical self-

similarity exists in the range of kmin � kmax for porous

media.

In this work, both the fractal distribution and tortu-

osity of capillary tubes in porous media are included.

Now, let the diameter of a capillary in the medium be

k and its tortuous length along the flow direction be

Lt(k). Due to the tortuous nature of the capillary,

Lt(k) P L0, with L0 being the representative length.

For a straight capillary, Lt(k) = L0, The relationship be-

tween the diameter and length of capillaries exhibits the

fractal scaling law [13,14]:

LtðkÞ ¼ k1�DTLDT

0 ð12Þ

where DT is the tortuosity fractal dimension with

1 < DT < 2 in two dimensions, representing the extent

of convolutedness of capillary pathways for fluid flow

through a medium.

The flow rate through a single tortuous capillary is

given by modifying the well known Hagen–Poiseulle

equation [17] to give

qðkÞ ¼ G
DP
LtðkÞ

k4

l
ð13Þ

where G = p/128 is the geometry factor for flow through

a circular capillary, l is the viscosity of the fluid, DP is
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the pressure gradient. Thus, the total flow rate Q for

flow through a unit cell with total cross-sectional area

A can be obtained by adding the individual flow rates,

q(ki). Due to Eqs. (12) and (13), we have

Q ¼
XJ

i¼1

qðkiÞ ¼
XJ

i¼1

G
DP
L0

A
l

� �
L1�DT

0

A
k3þDT

i

¼ G
DP
L0

A
l

� �
L1�DT

0

A

XJ

i¼1

k3þDT

i ð14Þ

where L0 is the representative length of a unit cell and

approximated by

L0 ¼
ffiffiffi
A

p
ð15Þ

Eq. (15) implies that a cubic sample is applied.

Comparing to Darcy�s law, we obtain the permeabil-

ity expression as follows:

K ¼ G
L1�DT

0

A

XJ

i¼1

k3þDT

i ð16Þ

Due to Eqs. (10) and (15), Eq. (16) can be rewritten as

K ¼ GA�ð1þDTÞ=2 kmin

kmax

� �3þDT

� k3þDT

max

XJ

i¼1

1

ð1� RiÞð3þDTÞ=Df
ð17Þ

Eq. (17) is the probability model for effective perme-

ability. Eq. (17) indicates that the permeability is a func-

tion of parameters A, kmin, kmax, DT, Df and random

number Ri. Once the parameters A, kmin, kmax, DT and

Df are determined, the permeability K can be calculated

by Monte Carlo simulation through choosing a set of

random numbers, Ri, i = 1,2,3, . . .,J.
The total cross sectional area A (in Eq. (17)) of a unit

cell is related to porosity by

A ¼ Ap=/ ð18Þ

where Ap is the total pore area in a unit cell and deter-

mined by

Ap ¼
XJ

i¼1

ai ¼
XJ

i¼1

pk2i =4 ð19Þ

where ai is the area of cross section of the ith capillary

tube chosen by Monte Carlo simulation through Eq.

(10). It can be seen that the total cross sectional area

A in this model can be determined by Eqs. (18) and

(19) by the Monte-Carlo technique if porosity / is given.

In Eq. (17), kmin and kmax are dependent upon a par-

ticular porous medium and can be measured by image

analysis of a sample, and Df is calculated by Eq. (11)

or measured by the box-counting method [3,13]. The

fractal dimension DT for tortuous streamlines is usually

determined by the box-counting method or Monte Carlo

simulation, and an analytical expression for DT has not
yet been developed. Using the Monte Carlo simulation,

Wheatcraft and Tyler [18] obtained the fractal dimen-

sion DT = 1.087 for flow through heterogeneous media.

Applying the box-counting method to measure a set of

possible streamlines in a porous medium, Yu and Cheng

[13] obtained the fractal dimension DT = 1.10 for flow

through the bi-dispersed porous media. We again use

DT = 1.10 for calculation of permeability in this work.

It is worth pointing out that the present model is also

based on the assumption that the porous medium con-

sists of a set/bundle of parallel and tortuous capillaries/

tubes with uniform diameters. Although the tortuous

capillaries/tubes are not uniform in real porous media,

the results by Shih and Lee [19] showed that the perme-

ability of a real capillary with non-uniform diameter

can be considered as a series of capillaries with different

diameters and the permeability is mainly determined by

the smallest capillary. This means that the permeability

is approximately determined by the smallest diameter

of a tortuous non-uniform capillary. This also means that

the permeability for flow through a real non-uniform

capillary is equivalent to that for flow thorough a uni-

form capillary with the smallest diameter. On the other

hand, since the statistical self-similarity exists in every

porous section perpendicular to flow direction, the per-

meability for flow through every porous section should

be the same and is independent of a section chosen. From

the above discussions, it is seen that the present model,

based on the assumption that the porous medium con-

sists of a set/bundle of parallel and tortuous capillaries/

tubes with uniform diameters, is an acceptable approxi-

mation to real porous media.
3. Results and discussions

3.1. Algorithm for permeability

In the following, we take the bi-dispersed porous

media as examples of real porous media to demonstrate

how to apply the proposed technique to calculate the

permeability of porous media.

The bi-dispersed porous medium is composed of clus-

ters, which are agglomerated by small particles. There

are macro-pores and micro-pores between and within

the clusters, respectively, see Fig. 1(a). Fig. 1(b) demon-

strates a typical fractal scaling law for the medium. The

pore area fractal dimension, Df, can be determined by

the value of the slope of a linear fit through the data

on a log–log plot of the cumulative number of box

(pore) number N(LP k) versus the box (pore) size k
based on Eq. (1). This proves that the bi-dispersed por-

ous media are fractal objects. Since the clusters and par-

ticles within the clusters are randomly distributed, the

macro-pores and micro-pores are also randomly distrib-

uted in bi-dispersed porous media.



Fig. 1. (a) An image photo [13] of the bi-dispersed porous

medium (/ = 0.54) at magnification of 50, the white are solid

and the black are pores (since the micro-pores inside clusters are

very small and the cooper particles are soft, it is difficult to see

the micro-pores inside clusters after the sample being polished.),

and (b) the cumulative pore number N(LP k) versus k.
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For the bi-dispersed porous media, Yu and Cheng

have obtained [13],

kmin

kmax

¼
ffiffiffi
2

p

dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /
1� /c

s
ð20Þ

where d+ = 24 is the ratio of the cluster mean size to the

minimum particle size, and /c is the micro porosity in

the cluster and given by [20]

/c ¼ 0:342/ ð21Þ

The average maximum pore size is given by [13]

kmax ¼
Rc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� /c

1� /
� 1

� �s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi
3

p 1� /c

1� /

s
� 2

" #
ð22Þ

where Rc ¼ 0:30 mm [13] is the cluster mean radius. The

total area of a unit cell for the medium is [13]
A ¼ 1

2
pR

2

c

1� /c

1� /
ð23Þ

The algorithm for determination of the permeability

of a bi-dispersed porous medium is summarized as

follows:

1. Given a porosity /, find the micro porosity /c in clus-

ter from Eq. (21).

2. Find kmin/kmax, kmax and total area A of a unit cell

from Eqs. (20), (22) and (23), respectively, or from

an image analysis of the sample.

3. Find pore area fractal dimension Df from Eq. (11)

(let d = 2), or from the box-counting method.

4. Produce a random number Ri of 0–1 by the Monte-

Carlo method.

5. Calculate ki by Eqs. (10), (20) and (22).

6. If ki > kmax, return to procedure 4, otherwise con-

tinue to the next procedure.

7. Find Ap from Eq. (19).

8. Calculate the permeability K from Eq. (16) or (17)

(with DT = 1.10 [13], or DT measured from the box-

counting method).

Procedures 5–8 are repeated for calculation of perme-

ability until a converged value is obtained at a given

porosity. Procedure 6 means that the randomly pro-

duced pore size ki in Monte Carlo simulation is not

allowed to exceed the maximum pore size kmax in order

to coincide with physical situation. Since the existing

analysis [21] showed that the smaller scale/tiny pores in

porous media play the negligible effect on the total/effec-

tive permeability, no restriction is imposed on the

minimum value of pore size ki in Eq. (10) in this

simulation.

The convergence creterion is that when the following

condiction is satistied, i.e.

AJ ¼ Ap=/ > A ð24Þ

stop the simulation and record the final/convergent per-

meability and the total simulated number (J) in one run

for a given porosity. In Eq. (24), AJ is the total area cal-

culated after the Jth computation in one run and A is

given by Eq. (23). If the converged permeability is

obtained in one run, set the permeability as Kn

(n = 1,2,3, . . . ,N). Then the averaged permeability for

a given porosity can be calculated by

hKi ¼ 1

N

XN
n¼1

Kn ð25Þ

where N is the total number of runs for a given porosity.

The variance is defined by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2i � hKi2

q
ð26aÞ
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Fig. 2. The pore sizes simulated by the present Monte Carlo
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where

hK2i ¼ 1

N

XN
n¼1

K2
n ð26bÞ

From the above algorithm for determination of the

permeability by this method, it is found that the algo-

rithm is quite simple, and the calculation of permeability

for 100,000 runs takes only several minites in a micro-

computer. No grid generation, no discretization, no

boundary conditions and no calculations of fluid field

are required for permeability by the present method,

whereas the conventional numerical methods such as

the LG and LBM are based on a discrete particle kinet-

ics utilizing a discrete lattice and discrete time. The LBM

can also be viewed as a special finite difference scheme

for the kinetic equation of the discrete-velocity distribu-

tion function. The numerical accuracy of the LG and

LBM is usually determined by boundary treatments,

Mach number [4]. The second advantage of the present

model over the conventional numerical methods is that

the present model is explicitly expressed as a function

of microstructural parameters, Df and DT, total area A

of a unit cell, maximum pore size kmax, minimum pore

size kmin as well as random number Ri. So, the mecha-

nisms affecting the permeability are better understood.

While the conventional numerical methods cannot

explicitly express the permeability as a function of

microstructural parameters. The third advantage of the

present model over the conventional numerical method

is that the conventional numerical methods such as the

LG and LBM require to solve a set of discrete Navier–

Stokes equations for velocity field for flow through arti-

ficially generated complex porous medium, so the

computation is usually time-consuming. Therefore, the

advantages of the present method over the conventional

numerical methods are evident. However, the above

comparisons do not imply that the present method

is an alternative/replacement to these modeling

approaches such as the LG and LBM.

3.2. Results and discussions

Due to Eqs. (20) and (22), the minimum pore size in

this example can be estimated by

kmin ¼
kmin

kmax

� �
kmax

¼
ffiffiffi
2

p
Rc

2dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� /c

1� /
� 1

� �s"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi
3

p 1� /c

1� /

s
� 2

# ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /
1� /c

s
ð27Þ

Fig. 2 gives the pore sizes randomly chosen by the

probability model Eq. (10) for pore size in the present

simulations under the given parameters Eqs. (20) and
(22) or Eq. (27) for bi-dispersed porous media. From

Fig. 2 it is also seen that the number of larger pores is

much less than that of smaller pores, this is qualitatively

consistent with fractal theory. It is also found from Fig.

2 that the minimum pore size is about 13 lm. Estimation

from Eq. (27) gives kmin = 13.1 lm at porosity 0.60. This

shows that the probability model Eq. (10) for pore size is

correct.

Fig. 3 presents the effective permeabilities by the pres-

ent Monte Carlo technique in 1000 runs of simulations

at porosity 0.60. From Fig. 3 it can be seen that the

simulated permeabilities roughly fluctuate around the

permeability of 600 Darcy. This is exactly expected be-

cause of the random character of pore size distribution.

But the averaged permeability can be estimated to be

about 600 Darcy at porosity 0.60. Table 1 lists the effec-

tive permeabilities and variances in different runs at dif-

ferent porosities in the present Monte Carlo simulations.

Form Table 1 it can be seen that the converged perme-

ability is reached when the number of total runs is greater

than 1000. Since the averaged permeability at N = 1000



Table 1

The simulated permeabilities (Darcy) by the present Monte Carlo technique in different numbers (N) of runs of simulations at different

porosities

Porosity N = 100 N = 1000 N = 10,000 N = 100,000 Variance r as N = 100,000

0.60 641.4 600.0 599.4 597.6 153.9

0.55 386.9 405.3 393.8 394.6 103.1

0.50 244.1 263.8 267.0 263.1 68.5

0.45 166.8 174.7 176.9 175.0 46.2
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Fig. 4. A comparison of the permeabilities predicted by the

present Monte Carlo simulations (at DT = 1.10) those obtained

by the fractal analytical solution [13].
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permeability.
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is almost the same as that at N = 100,000, the variances

r are only given at N = 100,000. It is seen that the vari-

ance is larger and is about 26% of averaged permeabil-

ity. This reveals that permeability fluctuations are

rough, and this can be also seen from Figs. 2 and 3. This

is consistent with the physical situation because in a real

random porous media some pores may be very large,

which contribute larger permeabilities, while some other

pores may be very small, which contribute relatively

smaller permeabilities. It is evident that the analytical

solution cannot reveal such a physical phenomenon.

From Figs. 2 and 3, it is also see that the present

Monte Carlo simulation can provide the random distri-

bution character of pores and the fluctuation character

of permeability, based on the proposed probability

models Eq. (10) for pore diameters. Although the pores

are randomly chosen and the rough oscillations/fluctua-

tions of the permeabilities are observed, the converged

permeabilities still can be obtained as long as the enough

number of runs of simulations is performed. Figs. 2 and

3, therefore, may be helpful for one to understand the

essence of Monte Carlo simulation on permeability. But,

an analytical model such as Ref. [13] cannot provide

such information, and the analytical model can only

provide a continuum/smooth curve f(k) � k and the final

permeability result such as the solid line in Fig. 4.

Fig. 4 compares the permeabilities by the present

Monte Carlo technique with those from the existing

fractal analytical solution. It is shown that they are in

good agreement. The deviations between the simulated

results by the Monte Carlo method and those by fractal

analysis are small. This verifies the validity of the present

simulation technique.

Fig. 5 illustrates the effect of the fractal dimension DT

on permeability. The figure shows that permeability de-

creases with the increase of the fractal dimension DT.

This is expected because the higher the fractal dimension

DT, the higher the tortuosity of capillaries, causing the

higher resistance to flow in porous media and thus the

lower permeability. In the limiting case of DT = 2, we

have so highly tortuous capillaries that fill a two-dimen-

sional plane. This situation corresponds to the case of

lowest possible value of permeability, which is consistent

with the real physical situation. Fig. 5 also reveals that

when DT = 1 (corresponding to the case of straight

capillary), the permeability is higher about 10% than
that when DT = 1.1, and when DT = 1.2, the permeabil-

ity is lower about 10% comparing to that as DT = 1.1. At

high tortuosity DT = 1.8, the permeability is lower about

120% comparing to that as DT = 1.1. This means that

tortuosity should be taken into account if accurate per-

meability is desired. In this work, DT = 1.1 (obtained by

the Box-counting method [13]) is again used to calculate

the permeability for comparison with analytical perme-

ability [13] (see Fig. 4). It might be better, if an analytical

tortuosity fractal dimension DT is applied. However,
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since the analytical permeability was based on the tortu-

osity fractal dimension DT = 1.1 obtained by the Box-

counting method, this work only compares the present

MC results with the analytical results based on DT =

1.1. A recent report [22] on the analytical tortuosity frac-

tal dimension DT shows that the tortuosity fractal

dimension DT is indeed about 1.10 in the porosity range

of 0.45–0.60. For an analytical model for the tortuosity

fractal dimension DT, readers may consult Ref. [22].
4. Concluding remarks

The Monte Carlo technique is applied to predict the

permeability of fractal porous media. The probability

models for pore distribution and for permeability are

expressed as a function of fractal dimensions, Df, DT,

total area A of a sample or unit cell, maximum pore size

kmax, minimum pore size kmin as well as random number

Ri. There is no empirical constant in the proposed mod-

els and every parameter in the models has clear physical

meaning. The validity of the present simulations is veri-

fied by a comparison with existing analytical solution for

permeability of the bi-dispersed porous media.

It is worth pointing out that if a porous medium is a

single-scale fractal medium, the permeability can be

easily found by performing an integral analytically.

However, if a porous medium is a multiscale or scale-

dependent fractal medium, the parameters kmin, kmax,

Df and DT are related to the scales k, in this case, the

integral may not be performed analytically and we can-

not obtain an analytical expression for permeability. For

this situation, the numerical integral may need to be car-

ried out for permeability, and the Monte Carlo tech-

nique might be one of the possible numerical methods.

Then, we can still obtain an explicit expression for per-

meability in this case, no matter whether a porous med-

ium is a single-scale or multiscale or scale-dependent

fractal medium. In addition, the present technique may

also have the general interests/potentials in analysis of

other transports such as thermal, electrical in fractal

porous media. Therefore, the proposed technique may

provide us with a new approach in addition to the ana-

lytical and other numerical methods.
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