# Thermodynamics of the Displacive Mechanism of $\alpha_1$ Transformation in a $\beta'$ Copper-Zinc Alloy

## Xiao-Lei Wu\*

Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R. China

Thermodynamics of the displacive mechanism of plate-shaped phase  $\alpha_1$  was analyzed in  $\beta'$ Cu-Zn alloys. It was proposed that the displacive transformation of the  $\alpha_1$  plate took place in the solute-depleted region formed in the parent phase during the incubation period. The thermodynamic analysis indicated that the driving force of  $\alpha_1$  transformation,  $\Delta G$ , increased with the reduction of  $x_d$ , the solute concentration of the depleted region. And,  $\Delta G$  could overcome the transformation barrier with solute depletion to a certain degree. In addition,  $x_d$  was higher than the equilibrium concentration in the phase diagram. Therefore, the shear formation of  $\alpha_1$  plate in the solute-depleted region was thermodynamically supported.

(Received February 15, 1999; In Final Form August 25, 1999)

Keywords:  $\beta'$  copper-zinc alloy,  $\alpha_1$  plate, thermodynamics, shear transformation, solute-depleted region

#### I. Introduction

Garwood<sup>(1)</sup> first found the surface relief phenomenon accompanying the formation of plate-shaped phase  $\alpha_1$  in  $\beta'$  Cu–Zn alloys. Garwood<sup>(2)</sup> and Cornelis and Wayman<sup>(3)</sup> revealed that the  $\beta' \rightarrow \alpha_1$  crystallography had typical features similar to the martensitic transformation. The formation of  $\alpha_1$  plates exhibited a dual nature, *i.e.*, displacive and diffusional characteristics<sup>(4)(5)</sup>. The mechanism of the  $\alpha_1$  transformation is closely related to diffusion of solute atoms.

Ghilarducci and Ahlers<sup>(6)</sup> observed a relaxation internal friction peak near 473 K in a Cu–Zn–Al alloy, and considered that this Debye peak be associated with solute atoms. Shen *et al.*<sup>(7)</sup> and Kang *et al.*<sup>(8)(9)</sup> further pointed out that internal friction peaks are induced by diffusion and segregation of solute atoms in ordered  $\beta'$  matrix before  $\alpha_1$  plate formation. Additionally, the concentration distribution of solute atoms during the incubation period possesses a large fluctuation comparing with that in the quenched sample<sup>(7)–(9)</sup>. Therefore, it is suggested that the solute-depleted region appear during the incubation period. Takezawa and Sato<sup>(10)</sup> implied that the formation of solute-depleted regions be created by stress-induced diffusion around defects.

At the early stage of  $\alpha_1$  growth, the change of the solute composition near the interface of the  $\alpha_1$  plate and matrix is strongly emphasized. Wu *et al.*<sup>(11)(12)</sup> observed the composition difference between  $\alpha_1$  plate and the parent phase at a stage when the  $\alpha_1$  plate fully inherited both

order and APD structures of the parent matrix. Yang et  $al.^{(9)}$  and Tadaki and Shimizu<sup>(13)</sup> observed that the solute composition of the  $\alpha_1$  plate is higher than the equilibrium concentration of the phase boundary in the phase diagram. And, the solute content in the matrix region adjacent to the interfaces is lower than the average of the matrix. This fact can be explained only by assuming a diffusion process involved in the transformation. The above results are well consistent with the other studies<sup>(14)-(17)</sup>.

The lattice medicinion of the parent phase in a

Lattice Modulation Preceding to the R-phase Transformation in a

The diffusion of solute atoms during growth of the  $\alpha_1$ plate may be caused by the stress field around pre-existing defects(10)(11). Schmitz et al.(18) suggested that elastic anisotropy may play an important role in promoting solute diffusion at defects. As a result, solute depletion may continue to appear at the tip of the  $\alpha_1$  plate, where the stress field may provide an effective driving force(18). Wu et al.(11) provided a direct experimental confirmation that there appears the solute-depletion region near dislocations adjacent to  $\alpha_1$  plate. Meng et al. (19) observed nucleation of the  $\alpha_1$  plate in discontinuous stress field at the  $\alpha_1$  plate tip. Yang et al. (20) also confirmed the existence of the shear stress field accompanying the  $\alpha_1$ growth. Thus, the combined effect of solute depletion and increasing elastic anisotropy leads to the formation of the solute-depleted region for  $\alpha_1$  shear growth.

As for the formation of the  $\alpha_1$  plate, three experimental conclusions may be drawn 1) the solute-depleted region may appear during incubation period and at the stage of  $\alpha_1$  growth; 2) the  $\alpha_1$  plate inherited the ordering and antiphase domain structures of the parent phase; 3) the  $\alpha_1$  plate had different solute composition with the matrix. Therefore, the displacive mechanism of  $\alpha_1$  transformation was proposed (6)-(22). The solute depleted region appeared in the parent phase during the incubation period and then,  $\alpha_1$  plate transformation took

<sup>\*</sup> Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, 15 Zhonguancun Rd., Beijing 100080, P.R. China, Fax: 0086-10-62561284; E-mail: xlwu@cc5.imech.ac.cn

place in this region by martensite-like mechanism. The  $\alpha_1$  plate is not martensite of a diffusionless reaction, because the composition of  $\alpha_1$  is different from that of the original matrix<sup>(13)</sup>. The transformation of the  $\alpha_1$  plate is a diffusion-controlled shear process.

Hsu and Zhou<sup>(23)(24)</sup> proposed a thermodynamic model for  $\alpha_1$  shear formation. The formation of the  $\alpha_1$  plate was considered to be a diffusionless transformation, the same as that of martensite. And, the composition of the  $\alpha_1$  plate is the same as that of the parent matrix. The thermodynamics analysis denied the  $\alpha_1$  shear mechanism because the driving force is positive during the temperature range of  $\alpha_1$  formation.

The purpose of the present paper is to present a thermodynamic analysis to shear model of the  $\alpha_1$  formation in the solute-depleted region in a  $\beta'$  Cu–Zn alloy.

#### II. Thermodynamic Model 19900-noisuffib

The model for the shear mechanism of  $\alpha_1$  transformation in the solute-depleted region can be expressed as

$$\beta' \rightarrow \beta_1' + \beta_2' \rightarrow \alpha_1' + \beta_2' \rightarrow \alpha_1' + \beta_2' \tag{1}$$

where  $\beta'$  is the parent matrix with  $x_0$ .  $\beta'_1$  and  $\beta'_2$  are the solute-depleted and solute-enriched region with  $x_d$  and  $x_e$  respectively.  $\alpha'_1$  is the embryo of the  $\alpha_1$  plate both with  $x_d$ . x represents the atomic fraction of solute zinc.

The solute atom has tendency of diffusion and segregation towards crystal defects of the parent matrix, such as grain boundaries and dislocations<sup>(25)</sup>. The energy change during incubation period,  $\Delta G_1$  is

$$\Delta G_1 = \Delta G_s + \Delta G^{\beta' \to \beta_1' + \beta_2'} \tag{2}$$

where  $\Delta G_s$  is energy change of defects themselves and  $\Delta G^{\beta' \to \beta_1' + \beta_2'}$  is the Gibbs free energy change attending  $\beta' \to \beta_1' + \beta_2'$  respectively.  $\Delta G_s$  is the nonchemical driving force for the formation of solute-depleted regions whereas  $\Delta G^{\beta' \to \beta_1' + \beta_2'}$  is the energy barrier.

The critical condition for the formation of the solutedepleted regions is the option of the solute depleted regions is

$$\Delta G_1 = 0$$
 begins of  $G_1 = 0$ 

 $\Delta G^{\beta' \to \beta'_1 + \beta'_2}$  can be expressed as

$$\Delta G^{\beta' \to \beta_1' + \beta_2'} = n[G^{\beta'}(x_d) - G^{\beta'}(x_0)] + [G^{\beta'}(x_e) - G^{\beta'}(x_0)]$$
(4)

where n and N are the volume fraction of the solute-depleted and solute-enriched region respectively.  $G^{\beta}(x)$  is the Gibbs free energy of  $\beta'$  matrix with composition x. It is obtained that

$$N(x_{c}-x_{0})=n(x_{0}-x_{d})$$
 (5)

Substituting eq. (5) into (4) and dividing by n, in a limited case,  $\Delta G^{\beta' \to \beta_1 + \beta_2'}$  is

$$\Delta G^{\beta' - \beta_1' + \beta_2} = G^{\beta'}(x_d) - G^{\beta'}(x_0) + (x_0 - x_d) \frac{dG^{\beta'}}{dx}$$
 (6)

 $G^{\beta'}(x)$  can be expressed as (23) on the second of (3,3,4,4) . M

$$G^{\beta'} = G^{\beta} + G^{\beta \to \beta'} \tag{7}$$

where

$$G^{\beta} = (1 - x_{Zn})G_{Cu} + x_{Zn}G_{Zn} + E^{\beta}(1 - x_{Zn})x_{Zn} + RT[(1 - x_{Zn}) \ln (1 - x_{Zn}) + x_{Zn} \ln x_{Zn}]$$
(8)  
$$G^{\beta \to \beta'} = -18425\eta^{2} - RT[2(1 - x_{Zn}) \ln (1 - x_{Zn}) + 2x_{Zn} \ln x_{Zn} - (\eta + 1 - x_{Zn}) \ln (\eta + 1 - x_{Zn}) - (x_{Zn} - \eta) \ln (x_{Zn} - \eta) - (x_{Zn} + \eta) \ln (x_{Zn} + \eta) - (1 - \eta - x_{Zn}) \ln (1 - \eta - x_{Zn})]$$
(9)

where R and T are the gas constant and absolute temperature respectively.  $E^{\beta}(-43014 \text{ J/mol})$  is the interaction parameter in  $\beta^{(23)}$ .  $\eta$  is the order parameter and defined as<sup>(23)</sup>

$$(\eta/0.32)^2 + (T/700)^5 = 1$$
 (10)

From eqs. (6) to (10),  $\Delta G^{\beta' \to \beta_1' + \beta_2'}$  is obtained as

$$\Delta G^{\beta' \to \beta_1 + \beta_2} = -43014(x_0 - x_d)^2 + RT \{0.66 \ln \left[ (1 - x_d)/(1 - x_0) \right] + 0.66x_d \ln \left[ x_d (1 - x_0)/x_0 (1 - x_d) \right] + (1 + \eta - x_d) \ln \left[ (1 + \eta - x_0)/(1 + \eta - x_d) \right] + (x_d - \eta) \ln \left[ (x_0 - \eta)/(x_d - \eta) \right] + (x_d + \eta) \ln \left[ (x_0 + \eta)/(x_d + \eta) \right] + (1 - \eta - x_d) \ln \left[ (1 - \eta - x_0)/(1 - \eta - x_d) \right]$$

$$/1.34 \qquad (11)$$

The  $\alpha_1$  plate nucleates in the solute-depleted region by shear mechanism. The free energy change attending this process,  $\Delta G_2$  is

$$\Delta G_2 = \Delta G^{\beta_1 \to \alpha_1'} + \Delta G^{\alpha_1' \to \alpha_1'} \tag{12}$$

where  $\Delta G^{\beta_1 \to \alpha_1}$  and  $\Delta G^{\alpha_1 \to \alpha_1}$  are the free energy change attending  $\beta_1 \to \alpha_1'$  and  $\alpha_1' \to \alpha_1$  respectively.  $\Delta G^{\beta_1 \to \alpha_1'}$  is chemical driving force for the  $\alpha_1$  nucleation whereas  $\Delta G^{\alpha_1' \to \alpha_1}$  is the energy barrier.

From Ref. (23), it is obtained

$$\Delta G^{\beta_1 \to \alpha_1} = 8738\eta^2 - 7232.4 + 20874.32x_d - 13967x_d^2 + (3.14348 - 3.94061x_d) \times T - 8.17 \times 10^{-4}x_d T^2$$
(13)

From eqs. (11) and (13), the total driving force for the  $\alpha_1$  transformation,  $\Delta G$  is

$$\Delta G = \Delta G_s + \Delta G^{\beta_1 \to \alpha_1'} = -\Delta G^{\beta' \to \beta_1' + \beta_2'} + \Delta G^{\beta_1' \to \alpha_1'}$$
 (14)

### in notional III. Results and Discussion

Figure 1 shows  $\Delta G$  at various solute depletion concentrations  $(x_d)$  in a Cu-42 at%Zn alloy  $(x_0=0.42)$  in terms of eq. (14). The temperature range of the  $\alpha_1$  formation is  $473 \sim 673$  K<sup>(19)</sup>. It can be seen that  $\Delta G$  is positive when  $x_d=x_0=0.42$ . It is indicated that the shear mechanism of the  $\alpha_1$  plate the same as martensite is thermodynamically impossible. However, with depleting of solute atoms, *i.e.*,  $x_d < x_0$ ,  $\Delta G$  will gradually change to

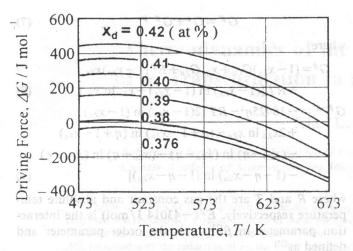



Fig. 1  $\Delta G$  vs T in a Cu-42 at%Zn alloy.

1 + (7/300) + (7/300) = 1

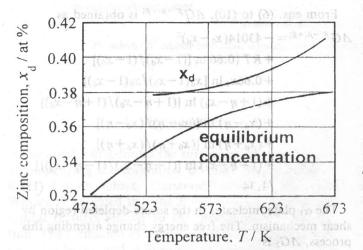



Fig. 2  $x_d$  vs T in a Cu-42 at%Zn alloy.

negative from the high to low temperature. And,  $\Delta G$  will become wholly negative with solute depletion to a certain degree. *i.e.*,  $x_d$ =0.376. Kang *et al.*<sup>(8)(9)</sup> obtained by ATEM/EDAX that the zinc compositions of the depleted region is about 0.38 at pct at 543 K in the Cu-42 at%Zn alloy. From Fig. 1, it is seen that  $\Delta G$  is negative. Therefore, the transformation of the  $\alpha_1$  plate may take place thermodynamically by shear mechanism in the solute-depleted region.

The transformation resistance of  $\alpha_1$  plate is lower than that of martensite  $^{(8)(12)(16)(22)}$ . The nonchemical energy for the martensite transformation with a 9R structure is 10.4 J/mol<sup>26)</sup>. Letting  $\Delta G = -10.4$  J/mol, the initial concentration of the  $\alpha_1$  plate can be obtained as a function of the reaction temperature, as shown in Fig. 2. The equilibrium zinc concentration of the phase boundary in the phase diagram is also listed. It may be seen that the lower the transformation temperature, the higher the depletion degree. And, the solute concentration of the depleted region is higher than the equilibrium one of the phase boundary in the phase diagram. This means that the  $\alpha_1$  plate has a partially supersaturated composition, consistent with experimental results<sup>(8)-(14)</sup>.

Hsu and Zhou<sup>(23)</sup> also proposed a thermodynamic model of  $\alpha_1$  shear formation. The mechanism is  $\beta'(x_0)$  $\rightarrow \alpha_1(x_0)$ . This means that  $\beta'$  and  $\alpha_1$  possess the same composition and that  $\alpha_1$  and martensite possess the same shear mechanism. The calculation results showed that the shear formation of  $\alpha_1$  plate is thermodynamically impossible due to the positive driving force. In fact, both  $\alpha_1$  plate and martensite are products of shear transformation. However, it is the solute-depleted region where  $\alpha_1$  plate transforms by martensitic-type displacive mode. As a result, the concentration of the  $\alpha_1$  plate is different from that of the matrix. The  $\alpha_1$  plate only has a partial supersaturation of solute composition, as compared with the parent phase. Different from the martensitic transformation, the formation of the  $\alpha_1$  plate consists of continuous coupling of diffusion and shear. In other words, the formation of the  $\alpha_1$  plate belongs to a diffusion-controlled shear process.

The present thermodynamic consideration is in agreement with the thermodynamic treatment for bainite transformation in Fe-C and Fe-C-X alloys<sup>(27)</sup>.

#### IV. Summary

The shear mechanism of the  $\alpha_1$  formation in the solute-depleted region is thermodynamically analyzed in Cu-Zn alloy. The model is:  $\beta' \rightarrow \beta'_1 +$  $\beta'_2 \rightarrow \alpha'_1 + \beta'_2 \rightarrow \alpha_1 + \beta'_2$  ( $\beta'$ ,  $\beta'_1$ ,  $\beta'_2$ , and  $\alpha'_1$ : the parent phase, the solute-depleted region, solute-enriched region, the embryo of the  $\alpha_1$  plate). The transformation mechanism consists of two steps. The solute-depleted region appears first in the matrix, followed by martensitic-type transformation of  $\alpha_1$  plate. The shear and depletion take place simultaneously. Thermodynamic calculations show that the driving force of the  $\alpha_1$  formation increases with the reduction of zinc concentration of the depleted region and may become negative corresponding to a certain degree of solute depletion within the whole reaction temperature range. As a result, the shear formation of the  $\alpha_1$  plate can be thermodynamically realized.

#### REFERENCES

- (1) R. D. Garwood: J. Inst. Met., 83 (1954-1955), 64-68.
- (2) R. D. Garwood and D. Hull: Acta Metall., 6 (1958), 98-102.
- (3) I. Cornelis and C. M. Wayman: Acta Metall., 22 (1974), 301-311.
- (4) H. I. Aaronson, T. Furuhura, J. M. Rigsbee, W. T. Reynolds, Jr. and M. J. Howe: Metall. Trans. A, 21A (1990), 2369-2409.
- (5) H. I. Aaronson, J. P. Hirth, B. B. Rath and C. M. Wayman: Metall. Mater. Trans. A, 25A (1994), 2655-2673.
- (6) A. Ghilarducci and M. Ahlers: J. Phys. F Metal. Phys., 13 (1983), 1757-1761.
- (7) H. M. Shen, Z. F. Zhang, Y. Q. Yang, L. M. Rui, Y. N. Wang and G. J. Shen: Acta Metall. Mater., 42 (1994), 657-660.
- (8) M. K. Kang, Y. Q. Yang, Q. M. Wei, Q. M. Yang and X. K. Meng: Metall. Mater. Trans. A, 25A (1994), 1941-1946.
- (9) Y. Q. Yang, Z. F. Zhang, H. M. Shen, Y. N. Wang, X. N. Zhao, J. M. Hong and M. K. Kang: Mater. Lett., 17 (1993), 369-373.
- (10) K. Takezawa and S. Sato: Metall. Trans. A, 21A (1990), 1541-1545.
- (11) M. H. Wu, Y. Hamada and C. M. Wayman: Metall. Mater. Trans. A, 25A (1994), 2581-2599.

- (12) M. H. Wu, J. Perking and C. M. Wayman: Acta Metall., 37 (1989), 1821-1837.
- (13) T. Tadaki and K. Shimizu: Metall. Mater. Trans. A, 25A (1994), 2569-2579.
- (14) Y. Nakata, T. Tadaki and K. Shimizu: Mater. Trans., JIM, 30 (22) K. Marukawa: Proc. ICOMAT-92, Monterey, California, C. M. (1989), 107-116.
- (15) T. Tadaki, T. Uyeda and K. Shimizu: Mater. Trans., JIM, 30 (1989), 117-126.
- (16) Y. Hamada, M. H. Wu and C. M. Wayman: Mater. Trans., JIM, 32 (1991), 747-756.
- (17) T. Tadaka, J. Q. Cai and K. Shimizu: Mater. Trans., JIM, 32 (26) T. Y. Hsu, X. W. Zhou, J. V. Humbeeck and L. Delaey: Scri. (1991), 757-765.
- Metall., 37 (1989), 3151-3155.
- (19) X. K. Meng, M. K. Kang, Y. Q. Yang and D. H. Liu: Metall. Mater. Trans. A, 25A (1994), 2601-2608. A hi electric bed intelle a subasseguino del citals en sex de faccose a sub mass.

- (20) Y. Q. Yang, D. H. Liu, X. K. Meng and M. K. Kang: Metall. Mater. Trans. A, 25A (1994), 2609-2614.
- (21) K. Takezawa, S. Maruyama, K. Marukawa and S. Sato: Metall. Mater. Trans. A, 25A (1994), 2621-2629.
- Wayman, J. Perkins Eds, 20-24, (July 1992), 821-827.
- (23) T. Y. Hsu and Z. Xiaowang: Acta Metall., 37 (1989), 3095-3098.
- (24) T. Y. Hsu and Z. Xiaowang: Acta Metall., 37 (1989), 3091-3094.
- (25) X. L. Wu, X. Y. Zhang, X. K. Meng, M. K. Kang and Y. Q. Yang: Mater. Lett., 22 (1995), 141-144.
- Metall., 25 (1991), 165-166.
- (18) A. Schmitz, M. Chandrasekaran, G. Ghosh and L. Delaey: Acta (27) X. L. Wu, X. Y. Zhang, M. K. Kang, X. K. Meng, Y. Q. Yang and D. Han: Mater. Trans., JIM, 35 (1994), 782-786.

Keywords: composite, etastic deformation, sheds state, inhomogenetty, eflipsoidal inclusion.

stresses containing abraicd spheroidal inhomogeneities are evaluated analytically using the Eshelby method and the Mori-Tanak a theory. The average stresses in the inhomogeneities and unrounding matrix are graphically indicated when

the stress in M is naturally the same as the externally persect in classically deformed M. the applied stress is cally shown in Fig. 1(b). This may cause the suppression variation of tress commonents as the second-order tensuniform? The Lising the Mort-Tanaka method toof ing classic interactions between infromogeneities. Adopting these methods, we will discuss and eraphically show



Minimilya squal to zero, or simple y, we con

Ellipsoidal Inhomografiles

Stress States in Composites Containing