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Many engineering materials, such as composites, bonded materials and geophysical materials, are 
generally modeled as nonhomogeneous continua and usually assumed to be piecewise homogeneous 
for simplicity. However, in some of these materials the mechanical properties do vary continuously 
and the continuity has to be considered. For examples, hydraulic fracturing of geophysical materials, 
interface crack problems in bonded materials [1,2], functionally graded materials [3] and so on, the 
continuity of the material properties should be considered undoubtedly in analysis. 
There have been a number of papers that studied the nonhomogeneous problem [4-6]. However, the 
analytical approach used by these studies can only deal with unbounded media and simple 
distribution of material properties, such as linear form, power form or exponential form. For a great 
deal of finite dimensional structural components and/or various distributions of material properties, it 
is difficult, if not impossible, to find the analytical solution. Therefore, numerical methods have to be 
developed. 
In numerical methods, the most versatile method is the Finite Element Method (FEM) and it has been 
used to solve many practical problems. However, almost all of these finite element approaches 
mainly concentrated on homogeneous materials or piecewise homogeneous materials. The finite 
element formulation relating to nonhomogeneous materials with continuously varying properties was 
very few. 
In this paper, we propose a more simple and more versatile finite element formulation. The concept 
of isoparametric transformation is adopted for simulating the variations of the material properties in 
individual finite elements. The continuity requirement of the material properties is satisfied. The 
feasibility and the versatility of  this method are verified by examples. 
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The finite element stiffness equations can be written as 

Keu e = F e 

where 

and 

(:) 

where 

Ke = ~'~e B~rD~B~dF2e (2) 

N t dF~ + ~ BeTDe e, Td~) e (3) 

B e =LN e is the strain shape function with L is a suitable linear operator, which is different 

for one-, two- or three-dimensional problems; D e is the constitutive matrix containing the 

appropriate material properties; b e , ~e and ~r  are the body force vector, the traction vector and 

the thermal strain vector respectively; f2 e is the domain of the element and F e is the boundary on 

which traction is prescribed. 

In above finite element formulation, the constitutive matrix D e , the body force vector b e and the 

thermal strain e r have relations with the material properties E(elastic modulus), v (Poisson's 

ratio),p (density) and a (the coefficient of linear thermal expansion) respectively. For 

homogeneous materials, E ,  v , p and a are constants. However, for nonhomogeneous materials, 

these material properties are functions of spatial coordinates. 

In this paper, we adopt the concept of the well-known isoparametrie transformation to describe the 

variations of  material properties in nonhomogeneous media. It is stated below for two-dimensional 

problem. The procedures for axisymmetric Or three-dimensional problem are similar. 

Consider a m-node plane element as shown in Fig. 1. The global coordinates of a point on the 

element at (~, r/) are given by 

O r- -  x 

Fig. 1 A multiple isoparametric element 

x =  Ni(~,rl)xi, y=ENi (~ , r l ) y~ .  (4) 
i=1 i=1 

where Nj are the shape functions corresponding to 

the node i ,  whose coordinates are (xi,yi) in the 

global system and (~i,r/i) in the local system. As an 

isoparametric element, the displacements within the 

element are interpolated as follows 

fa In 

u = E Ni(~, r/)ui, o = E N i ( ~ , t I ) u  ' . (5) 
i=1 i=1 

where (u ,o )  are the nodal displacements in the x and y directions, respectively. Now, we let the 
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material properties E ,  v , p  and a at the point (~,r/) be expressed as 

m m 

e = v :  y 
i=1 ~=l (6) 
m m 

p = ) "  N, (~, rDp,, c~ = ~ N,(¢, r/)a,, 
i=1 i=1 

where (E i , v i ,p i , c t  i) stand for the material properties at the node i of the element. By using 

equation (6), the actual variations of the material properties in a specified element can be 

approximated by polynomial forms. The degree of the polynomial depends on the number of nodes 

in the element. Thus, in th e element, the simulating accuracy for coordinates, displacements and 

material properties is identical, because the same shape functions are used. This kind of elements may 

be called as multiple isoparametric elements. 

Substituting (6) into the element constitutive matrix De(E,  v ) ,  the body force vector be(p) and the 

thermal strain 8 r ( a )  in equations (2) and (3) respectively, we obtain the element stiffness matrix 

and the load vector in the domain of the reference element, that are 

Ke = "~e B" T(~,r/) De(~,r / )B ' (~ , r / )det  J(~:,q) dA e (7) 

Ner b e F e = ~ (¢, r/) (~, r/)dA e + ~ NeT(c, r/) ~e (¢, r/)dse 

(s) 
+ e T( ,'7)d.4e 

where a,  is the area of the reference element and s e is the part of the boundary of the reference 

element over which ie is specified. 

Because the variations of material properties have been simulated properly in the elements, it is 

expected that the higher accuracy may be obtained with relative coarse mesh for the stress analysis of 

nonhomogeneous media, whose material properties vary continuously. Clearly, the finite element 

formulation presented above is also suitable for homogeneous medium and piecewise homogeneous 

medium merely by making the value of each material property be the same at all of  nodes on an 

element. Of course, if necessary, we could also have multiple superparametric elements and multiple 

subparametric elements corresponding to the superparametric elements and the subparametric 

elements in conventional FEM [7] respectively. 

Numerical integration 

Some basic requirements for above so-called multiple isoparametric elements, such as the 
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geometrical conformability, the displacement continuity and the convergence aspects, are 

undoubtfully satisfied. The continuity of material properties, if required (for nonhomogeneous 

materials with varying continuously properties), can also be satisfied. The proof is similar to that for 

the continuity of displacement functions. 

The problem to which should be pay attention is the numerical integration of the element stiffness 

matrices and the element load vectors. For a multiple isoparametric element, the order of the 

integrand is generally higher than the corresponding isoparametric element, because the matrix D e 

and the vectors b e, I~ r are functions of the coordinates ~: and r/, as shown in (7) and (8). The 

terms of the matrix D e are rational fractions because they are calculated by E and v, for example, 

I 1 - f l y  v 0 
De_ - E / v 1 - p v  0 (9) 

(1 + v)[1 - (1 + fl)v] [ 1 - (1 + fl)v 
0 0 2 

for two-dimensional problems, where fl =0 for plane stress and f l=l  for plane strain. Therefore, the 

minimum number of integration points required by the matrix K e and the vector F e could not be 

determined easily. But by considering the first term of the load vector F e , we can say that the errors 

of the integration formulae may be at least of the order as follows: linear elements, O(h3); 

quadratic elements, O(h5); cubic elements, O(h7). Thus, the minimum number of Gaussian 

integration points will be, for example, 3x3 for eight-node two-dimensional elements. The effect of 

different integration points on the accuracy of computed results will be demonstrated in next section. 

It will be seen that 3 x3 Gaussian points are adequate for quadratic quadrilaterals. So, the efforts for 

numerical integration of the multiple isoparametric elements are little more than that for the 

conventional finite elements. 

N u m e r i c a l  e x a m n l e  a n d  cli.~en~sion 

For verifying the accuracy and the efficiency of above multiple isoparametrie elements, a following 

example is computed. Consider a plate with exponential elastic modulus and constant Poisson's ratio 

subjected to uniform tension (Fig. 2). Assume that the elastic modulus varies along x-direction as 

x Ew 
E(x) = E o exp(-- ln -~ - ) ,  (10) 

w e 0  
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where E 0 is the elastic modulus at x = 0, Ew is that at x = w and that Ew / E0 = 5.0. The element 

division is shown in Fig. 2. All the elements are eight-node elements. The computed results 

areillustrated in Fig. 3 and Fig. 4~ It can be seen from Fig. 3 that the multiple isoparametric finite 

element method proposed in this paper is very effective for the stress analysis of nonhomogeneous 
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Fig. 2 An FGM plate under 
uniform tension 

materials with continuously varying properties. The 

higher accuracy has been achieved by very coarse 

mesh. As contrast, the result calculated by the 

conventional FEM can not be accepted. From Fig. 4, 

it is observed that 3 ×3 Gaussian points are adequate. 

The increase of the number of integration points has 

little effect on the accuracy. This is fortunate. It is 

revealed that little more efforts in integration for 

multiple isoparametric elements will be made than 

that for ordinary isoparametric elements. Thus, the 

advantage of multiple isoparametric elements will be 

brought into play. 
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Fig. 3 The comparison of computed results Fig. 4 The effect of Gaussian points on the accuracy 
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Conclusion 

The technique of isoparametric transformation is adopted for simulating the variation of material 

properties. The multiple isoparametric finite element formulation developed in this paper has been 

verified to be very effective for analyzing nonhomogeneous materials with continuously varying 

properties. It makes the description of geometry, displacements and material properties be achieved 

the same accuracy. It provides enormous flexibility in meshing. Further, This method can be extended 

straightforwardly to three dimensional problems. The revision of the existed FEM software is very 

easy. The revised FEM software can be efficiently used for the analysis of various materials, which 

include homogeneous solids, layered composites, composites with graded interfacial zone, 

functionally graded materials and geophysical materials. It will enhance the FEM and make it play a 

more important role in practical engineering. 
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